

NES14



#### **TABLE OF CONTENTS**

| 1.                                                                                                                                                                                                                    | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1.1.                                                                                                                                                                                                                  | BEST VALUE PLAN FOR SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 5                                                                                                        |
| 1.2.                                                                                                                                                                                                                  | OUR WRMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 6                                                                                                        |
| 1.3.                                                                                                                                                                                                                  | WREN TRANSFER – STRATEGIC RESOURCE OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 8                                                                                                        |
| 2.                                                                                                                                                                                                                    | NEED FOR ENHANCEMENT INVESTMENT TO PROVIDE NEW SUPPLIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                         |
| 2.1.                                                                                                                                                                                                                  | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |
| 2.2.                                                                                                                                                                                                                  | OUR PREVIOUS WRMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                         |
| 2.3.                                                                                                                                                                                                                  | OUR BASELINE SUPPLY FORECAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                         |
| 2.3.1                                                                                                                                                                                                                 | Water Available For Use (WAFU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |
| 2.3.2                                                                                                                                                                                                                 | Summary of baseline supply forecast components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                            |
| 2.3.3                                                                                                                                                                                                                 | Baseline supply assessment results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                            |
| 2.4.                                                                                                                                                                                                                  | OUR BASELINE DEMAND FORECAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |
| 2.4.1<br>2.4.2                                                                                                                                                                                                        | Overview of demand forecasting<br>Baseline demand forecast component summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |
| 2.4.2                                                                                                                                                                                                                 | Baseline demand forecast component summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |
| 2.5.                                                                                                                                                                                                                  | BASELINE SUPPLY DEMAND FORECAST SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |
| 2.5.1                                                                                                                                                                                                                 | Baseline Supply Demand Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |
| 2.5.2                                                                                                                                                                                                                 | Baseline dry year annual average (DYAA) supply demand balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27                                                                                                         |
| 2.5.3                                                                                                                                                                                                                 | WRMP19 and WRMP24 WAFU comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |
| 2.5.4                                                                                                                                                                                                                 | Link to long term strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |
| 2.6.                                                                                                                                                                                                                  | CUSTOMER SUPPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |
| 3.                                                                                                                                                                                                                    | BEST SUPPLY ENHANCEMENT OPTIONS FOR CUSTOMERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                                                                                         |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |
| 3.1.                                                                                                                                                                                                                  | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |
| <b>3.1.</b><br>3.1.1                                                                                                                                                                                                  | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                                                                                         |
| <b>3.1.</b><br>3.1.1<br>3.1.2                                                                                                                                                                                         | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37<br>39                                                                                                   |
| <b>3.1.</b><br>3.1.1                                                                                                                                                                                                  | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach<br>Phase 3: Feasibility Studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37<br>39<br>41                                                                                             |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3                                                                                                                                                                                | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37<br>39<br>41<br>49                                                                                       |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4                                                                                                                                                                       | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach<br>Phase 3: Feasibility Studies<br>Phase 4a: Economic Modelling of Options – EBSD Modelling<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN                                                                                                                                                                                                                                                                                                       | 37<br>39<br>41<br>49<br>51<br><b>51</b>                                                                    |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1                                                                                                                                      | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach<br>Phase 3: Feasibility Studies<br>Phase 4a: Economic Modelling of Options – EBSD Modelling<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN<br>Best Value Planning Introduction                                                                                                                                                                                                                                                                   | 37<br>39<br>41<br>49<br>51<br><b>51</b><br>51                                                              |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2                                                                                                                             | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach.<br>Phase 3: Feasibility Studies<br>Phase 4a: Economic Modelling of Options – EBSD Modelling<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN<br>Best Value Planning Introduction<br>Problem Characterisation.                                                                                                                                                                                                                                     | 37<br>39<br>41<br>49<br>51<br><b>51</b><br>51<br>52                                                        |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3                                                                                                                    | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach.<br>Phase 3: Feasibility Studies.<br>Phase 4a: Economic Modelling of Options – EBSD Modelling .<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN<br>Best Value Planning Introduction .<br>Problem Characterisation.<br>Best Value Plan Methodology Overview.                                                                                                                                                                                       | 37<br>39<br>41<br>51<br>51<br>51<br>52<br>52                                                               |
| <b>3.1.</b><br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4                                                                                                                    | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach<br>Phase 3: Feasibility Studies<br>Phase 4a: Economic Modelling of Options – EBSD Modelling<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN<br>Best Value Planning Introduction<br>Problem Characterisation.<br>Best Value Plan Methodology Overview.<br>Best Value Plan Assessment Results                                                                                                                                                       | 37<br>39<br>41<br>51<br>51<br>52<br>52<br>52<br>56                                                         |
| <b>3.1.</b><br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5                                                                                                           | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach.<br>Phase 3: Feasibility Studies.<br>Phase 4a: Economic Modelling of Options – EBSD Modelling .<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN<br>Best Value Planning Introduction .<br>Problem Characterisation.<br>Best Value Plan Methodology Overview.                                                                                                                                                                                       | 37<br>39<br>41<br>51<br>51<br>52<br>52<br>52<br>56<br>70                                                   |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6                                                                                         | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br>51<br>52<br>52<br>52<br>56<br>70<br>72<br>76                                 |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6                                                                                         | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br>51<br>52<br>52<br>52<br>56<br>70<br>72<br>76                                 |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.6<br>3.2.7<br><b>4.</b>                                                          | DEVELOPMENT OF SUPPLY OPTIONS<br>Options Development Methodology Overview.<br>Summary of option screening approach.<br>Phase 3: Feasibility Studies<br>Phase 4a: Economic Modelling of Options – EBSD Modelling<br>Phase 4b: Strategic Environmental Assessment (SEA) of Options.<br>BEST VALUE PLANNING AND OUR BEST VALUE PLAN<br>Best Value Planning Introduction<br>Problem Characterisation.<br>Best Value Plan Methodology Overview.<br>Best Value Plan Methodology Overview.<br>Best Value Plan Assessment Results<br>Long Term Planning.<br>Best Value Plan Benefits.<br>Customer need<br>COST EFFICIENCY<br>COST METHODOLOGY | 37<br>39<br>41<br>49<br>51<br>51<br>52<br>52<br>52<br>56<br>70<br>72<br>76<br><b>81</b>                    |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br><b>4.</b><br><b>4.1.</b>                                                    | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br><b>51</b><br>52<br>52<br>52<br>56<br>70<br>72<br>76<br><b>81</b><br>81<br>81 |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br><b>4.</b><br><b>4.1.</b><br>4.1.1<br>4.1.2                                  | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br>51<br>52<br>52<br>56<br>70<br>72<br>76<br>81<br>81<br>81<br>82               |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br><b>4.</b><br><b>4.1.</b><br>4.1.1<br>4.1.2<br>4.1.3                         | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br>51<br>52<br>52<br>56<br>70<br>72<br>76<br>81<br>81<br>82<br>84               |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.6<br>3.2.7<br><b>4.</b><br><b>4.1.</b><br>4.1.1<br>4.1.2<br>4.1.3<br><b>4.2.</b> | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br>51<br>52<br>52<br>56<br>70<br>72<br>6<br>81<br>81<br>81<br>82<br>84<br>86    |
| <b>3.1.</b><br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br><b>3.2.</b><br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br><b>4.</b><br>4.1.1<br>4.1.1<br>4.1.2<br>4.1.3<br><b>4.2.</b><br>4.2.1       | DEVELOPMENT OF SUPPLY OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37<br>39<br>41<br>49<br>51<br>52<br>52<br>56<br>70<br>72<br>76<br><b>81</b><br>81<br>82<br>84<br>86<br>86  |



Enhancement Case (NES14)

# PR**24**

| 5.   | CUSTOMER PROTECTION       | 89 |
|------|---------------------------|----|
| 5.1. | PERFORMANCE COMMITMENTS   | 89 |
| 5.2. | PRICE CONTROL DELIVERABLE | 89 |

#### Glossary

| Acronym | Definition                               |
|---------|------------------------------------------|
| ACWG    | All Company Working Group                |
| AMP     | Asset Management Plan                    |
| ASR     | Aquifer Storage and Recovery             |
| AWS     | Anglian Water Services                   |
| BNG     | Biodiversity Net Gain                    |
| BOD     | Biological Oxygen Demand                 |
| Capex   | Capital Expenditure                      |
| DO      | Deployable Output                        |
| DWI     | Drinking Water Inspectorate              |
| EA      | Environment Agency                       |
| EBSD    | Economics of Balancing Supply and Demand |
| EDR     | Electrodialysis Reversal                 |
| EIA     | Environmental Impact Assessment          |
| ESW     | Essex & Suffolk Water                    |
| FAT     | Full Advanced Treatment                  |
| FFT     | Flow to Full Treatment                   |
| HLS     | High-Level Screening                     |
| HMT     | HM Treasury                              |
| IEA     | Integrated Environmental Assessment      |
| IEX     | Ion Exchange                             |
| IMOD    | Investment Model                         |
| LRP     | Langford Recycling Plant                 |
| NPV     | Net Present Value                        |
| NAV     | New appointments and variation           |
| NWG     | Northumbrian Water Group                 |
| Opex    | Operational Expenditure                  |
| PCV     | Prescribed Concentration or Value        |
| PFD     | Process Flow Diagram                     |
| PS      | Pump Station                             |
| PSV     | Pressure Sustaining Valve                |
| PWS     | Public Water Supply                      |
| rWRMP   | Revised Water Resource Management Plan   |
| RWPS    | Raw Water Pumping Station                |
| SEA     | Strategic Environmental Assessment       |
| SPA     | Strategic Pipeline Alliance              |
| SRO     | Strategic Resource Option                |
| STW     | Sewage Treatment Works                   |
| Totex   | Total Expenditure                        |
| TW      | Thames Water                             |

WATER (iving water

ESSEX& SUFFOLK WATER living water

**Enhancement Case (NES14)** 

| Acronym | Definition                              |
|---------|-----------------------------------------|
| UF      | Ultrafiltration                         |
| UV      | Ultraviolet                             |
| WFD     | Water Framework Directive               |
| WAGS    | Waveney Augmentation Groundwater Scheme |
| WRC     | Water Recycling Centre                  |
| WRE     | Water Resources East                    |
| WRMP    | Water Resource Management Plan          |
| WRP     | Water Reuse Plant                       |
| WRPG    | Water Resource Planning Guidelines      |
| WRZ     | Water Resource Zone                     |
| WTW     | Water Treatment Works                   |
| WwTW    | Wastewater Treatment Works              |

**Enhancement Case (NES14)** 

#### **1. INTRODUCTION**

#### **1.1. BEST VALUE PLAN FOR SUPPLY OPTIONS**

This case sets out our WRMP Supply Options and should be read in conjunction with our <u>WRMP Demand Management</u> (NES15) and <u>NHH Demand Management cases</u> (NES36). We worked with regional stakeholders and neighbouring water companies to identify the best options to include in our WRMP24. We considered what risk could be offset by using demand management, before seeking to develop supply-side options. Our planning approach used least-cost optimisation as well as broader 'best value' decision making criteria to develop a 'Best Value Plan' for WRMP24, including:

- cost to build and operate the plan;
- adaptability and flexibility of the plan to cope with uncertain future needs;
- alignment to the Water Resources North and Water Resources East regional strategies;
- resilience of the plan to severe and extreme drought and other hazards, and the residual risks;
- deliverability of the plan with timescales needed to manage risks;
- alignment to customer preferences; and
- environmental and social impacts of the plan, including net environmental benefit.

Our enhanced water supply options were developed under Essex & Suffolk Water's revised Water Resources Management Plan 2024 (rWRMP24). A WRMP has also been produced for our Northumbrian Water region but has not identified any investment need for supply options and solves the supply demand deficit in the North East through the application of demand management options (DMO). This is described in business case <u>NES15</u>.

The preferred plan for supply options is our Best Value Plan. This includes a range of options designed to integrate with our demand management programme to address the supply deficit in our Essex & Suffolk Water region. The plan represents the outcome of stakeholder and customer engagement, and an extensive benefits assessment process. The options and AMP8 costs are summarised in Table 1.

Section 3 of this document sets out our process for determining our preferred plan, and Section 4 provides more detail on our costing methodology. Table 1 also includes the WreN Transfer (£1.6m) which is funding for feasibility work related to an inter-regional transfer and did not form part of our WRMP Best Value Plan. This is described in Section 1.3.

**Enhancement Case (NES14)** 

#### TABLE 1: OUR WRMP SUPPLY OPTION COSTS – AMP8 ENHANCEMENT COSTS

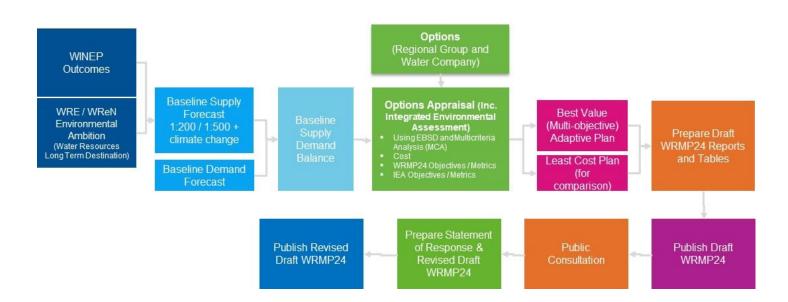
| Option Name                             | Туре                                       | Capex £m | Opex £m |
|-----------------------------------------|--------------------------------------------|----------|---------|
| New Linford WTW & Borehole(s) 10MI/d    | New groundwater abstraction and WTW        | 37.200   | 4.699   |
| Langham WTW Nitrate scheme              | Nitrate removal                            | 40.100   | 0.00    |
| Langford WTW Nitrate scheme             | Nitrate removal                            | 30.738   | 0.00    |
| Langford WTW UV                         | Cryptosporidium removal                    | 7.157    | 0.00    |
| Langford Clarifier upgrade              | Treatment capacity upgrade                 | 8.764    | 0.00    |
| Abberton Raw Water PS                   | Raw water pumping station capacity         | 0.648    | 0.00    |
|                                         | upgrade                                    |          |         |
| Suffolk Strategic Network               | Potable water transfers (Inter-connectors) | 117.730  | 1.249   |
| Bungay wells to Broome WTW and          | Raw water Intra-water resource zone        | 8.935    | 0.00    |
| Broome to Barsham WTW transfers         | transfers                                  |          |         |
| Lowestoft Reuse                         | Water reuse scheme                         | 76.437   | 0.00    |
| North Suffolk Winter Storage Reservoir  | New raw water storage reservoir            | 34.831   | 0.00    |
| 7500 and Transfer                       |                                            |          |         |
| Barsham Nitrate scheme                  | Nitrate removal                            | 16.017   | 0.00    |
| WReN / WRW Inter-Regional Transfer      | Inter-regional transfer                    | 1.600    | 0.00    |
| Strategic Resource Option (feasibility) |                                            |          |         |
| Total                                   |                                            | 380.157  | 5.948   |

#### 1.2. OUR WRMP

Our statutory Water Resources Management Plan (WRMP24) sets out the investment required to ensure reliable supplies of water for our customers. The plan covers the period from 2025 to 2100 with a particular focus on the minimum 25-year planning period (2025 to 2050).

Through this process, we have established a clear need to improve water supply resilience in the Essex & Suffolk Water region, especially in the Suffolk area where we need to urgently address a material water supply deficit. Reductions in the amount of water we are permitted to abstract from rivers, recently applied by the Environment Agency, and the impact of climate change on levels of rainfall and river flows are key factors driving this need.

Our supply and demand modelling, which considers future forecasts based on factors including climate change, population growth and changes in environmental legislation, has allowed us to quantify the level of water supply deficit and develop a robust package of options to maintain a resilient supply for our customers over a long-term planning horizon.


The enhancement options outlined in this case have been selected via a comprehensive options development and screening process and have been subject to benefits assessment and customer testing. Our case for securing future water supply in Essex and Suffolk is based on our WRMP24 Best-Value plan and comprises multiple schemes to be implemented in AMP8

Enhancement Case (NES14)

as part of a long-term multi-AMP approach. Our WRMP24 is an adaptive plan with four alternative programmes that have been defined by testing our plan against a range of different future scenarios. These adaptive programmes will be reviewed at key decision points in delivery, to ensure we are able to adapt our approach efficiently should the need arise.

It should be noted that this package of supply options has been developed as part of the larger WRMP picture which aims to achieve the best balance for our customers between increasing supply and reducing demand (through our leakage, metering, and demand management activities).

Figure 1 provides an overview showing key steps of our WRMP24 development process referred to within this document.



#### FIGURE 1: WRMP24 DEVELOPMENT PROCESS

Our supply options have been identified through an extensive process of options development, appraisal and screening, and assessment of benefits. Costs have been developed and assured using our iMOD cost assessment database of previous historical investments. As part of our accelerated delivery proposals that we submitted to Ofwat and Defra and which will form part of the transitional spend for AMP 8, we intend to take forward further work on the design of the material schemes emerging from this plan. We hope that this work will further strengthen the evidence base to support these schemes and to improve design and costing information later in the PR24 process.

In defining the need for investment and identifying the supply side interventions to address the need, we have considered government policy as set out in the Water Resources Planning Guidelines<sup>1</sup> including the requirements to:

<sup>1</sup> Water resources planning guideline - GOV.UK (www.gov.uk)

PR**24** 

- provide a secure and clean water supply as expected by customers in a way that provides value for customers, society and the environment over the long-term;
- improve supply resilience by planning to raise customer levels of service for a Level 4 drought plan restrictions (standpipes and rota cuts) from 1 in 200 years to 1 in 500 years by 2040;
- reduce household Per Capita Consumption (PPC) to 110l/head/day by 2050 as well as working with retailers to implement actions to assist non-household (NHH) users to sustainably reduce their water use (by reducing nonhousehold demand by 9% by 2037/38);
- reduce leakage by 50% from 2017/18 levels by 2050;
- customers reduce water demand and water lost through leaks by adopting consistent approaches to support repair and replacement of supply pipes;
- install smart meters as a standard;
- consider compulsory metering in regions assessed by the Environment Agency (EA) to be a Serious Water Stressed Area. The Essex & Suffolk region is currently classified as a Serious Water Stressed Area;
- adapt to climate change; and
- demonstrate a step change in rectifying overreliance on unsustainable water sources.

We have assessed vulnerability to various strategic issues, risks and uncertainties to determine economic and best value modelling approaches using our problem characterisation assessment tool. Our assessment has shown that whilst there is a relatively large deficit problem to solve, the issues associated with this are of low to medium complexity and so well understood. These include:

- the impact of climate change;
- Sustainability Reductions and Environmental Destination impacts; and
- the impact of Covid-19 on household and non-household demand forecasts.

Our revised WRMP24 has been audited by Jacobs consultants<sup>2</sup> to confirm that:

- we have met obligations in developing our plan;
- our plan reflects the Water Resources East regional plan;
- we have developed a best value plan for managing and developing our water resources so we can continue to meet our obligations to supply water and protect the environment; and
- we have developed a plan that is based on sound and robust evidence including relating to costs.

#### **1.3. WREN TRANSFER – STRATEGIC RESOURCE OPTIONS**

In addition to our WRMP Best Value Plan, we have identified a funding requirement for feasibility work related to Interregional Transfer Strategic Resource Option (SRO). We have included £1.6m Capex for this work in our business case. This is the only element of our supply options business case that relates to our Northumbrian Water region.

<sup>&</sup>lt;sup>2</sup> WRMP24 Technical Assurance Report September 2022

Northumbrian Water, Yorkshire Water (YW) and United Utilities (UU) have confirmed their WRMP24 preferred final plans. Northumbrian Water and Yorkshire Water have included the 140Ml/d (365 days/annum) Tees to York Transfer from 2040. This is required because the deployable output of Yorkshire Water's River Derwent abstraction will reduce due to sustainability reductions following the re-naturalisation (removal of weir structures etc) of the River Derwent. However, there is a level of uncertainty as investigations to confirm the size of the sustainability reductions will not conclude until 2026/27. Consequently, the final sustainability reductions may be smaller or larger than YW has assumed in the central plan which may result in the selection of different schemes.

Northumbrian Water and United Utilities have both considered a 100MI/d Kielder Reservoir to United Utilities Transfer option although it was not selected in UU's least cost plan or best value plan for its own security of supply / resilience or in any of its adaptive pathways. Likewise, Water Resources North and Water Resources West have also considered the option to support security of supply and increase resilience in other regions (e.g., Water Resources South East). However, the latest round of regional reconciliation concluded that the transfer was not required, largely because of the high unit costs (£/MI/d) associated with the scheme and that there were other better value feasible options.

Nevertheless, RAPID would like both options (along with other Yorkshire Water Options) to be further developed, possibly as an SRO. This is because, as the detailed engineering design stage of options progress, there is a risk that SROs in other regions become unfeasible because of an insurmountable issue. Should this be the case, the Kielder Transfer then may become a favoured option.

The surplus of water in Kielder reservoir means we can only provide a raw water export to one of the companies. Consequently, a Strategic Resource Option (SRO) is proposed to:

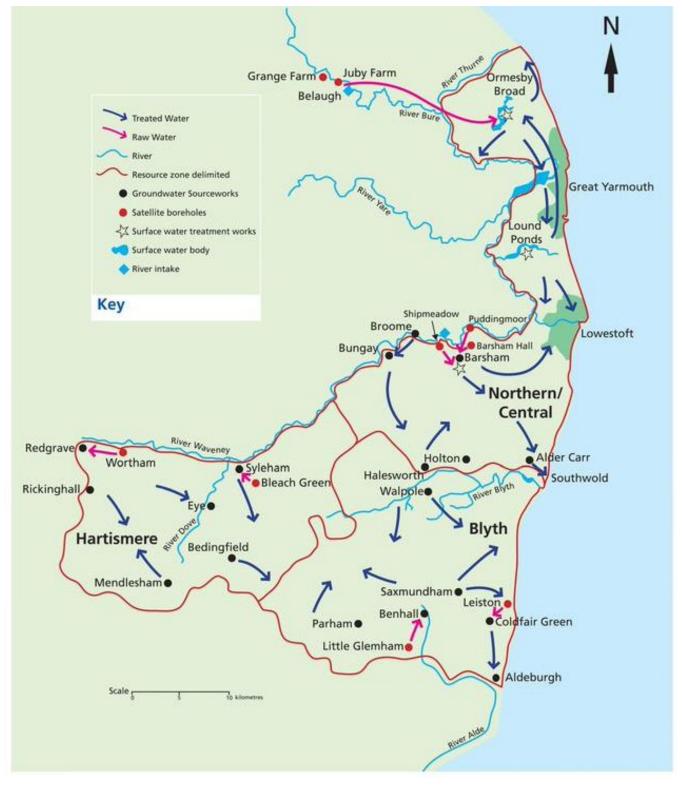
- review inter-regional transfers between Water Resources North, Water Resources West and Water Resources South East; and
- confirm, of the two Kielder schemes (Kielder to UU or Tees to YW) which option provides the best value.

We have included a funding allowance of £1.6m in our PR24 Business Plan (Table CW4: Rows 56 and 57). The allowance is based on our 50% contribution to the consultancy fee proposal of £3.2million to get the Kielder to UU Transfer to Gate 2 (the end of the feasibility assessment phase). United Utilities will fund the remaining 50%. Yorkshire Water will cover the cost of its schemes. The funding has been profiled so that the work can conclude in time to inform draft WRMP29 supply demand forecasts. The scope for the work is to undertake further hydrological modelling at a water resource zone (WRZ), water company and regional level along with further option feasibility, design, and environmental assessment.

Enhancement Case (NES14)

#### 2. NEED FOR ENHANCEMENT INVESTMENT TO PROVIDE NEW SUPPLIES

#### **2.1. INTRODUCTION**


This section describes the work we have done as part of our draft WRMP24 to accurately assess our baseline supply demand balance. This has identified significant forecast supply demand deficits in all four of our Essex & Suffolk Water Resource Zones (WRZ). These deficits have informed the need for enhanced investment to deliver the supply-side interventions described in this case.

East Anglia is one of the driest parts of the country and continues to be classified by the Environment Agency as a Serious Water Stressed Area. Essex & Suffolk Water cover two geographically separate supply areas, with water supplied to approximately 1.76 million customers in the Essex supply area and 0.28 million customers in Suffolk and Norfolk, which we refer to as the Suffolk supply area. Within East Anglia we have four WRZs, one in Essex and three in the Suffolk supply area, known as the Blyth, Hartismere, and Northern Central WRZs. Schematic diagrams of the WRZs and associated infrastructure are shown below (Figure 2 and Figure 3).



**Enhancement Case (NES14)** 

#### FIGURE 2: SUFFOLK WRZ



Enhancement Case (NES14)

#### **FIGURE 3: ESSEX WRZ**



Our previous WRMP19 was published in 2019 and forecast a final plan supply surplus across the full planning period in all of our WRZs. As such, no supply schemes were required in AMP7. Our AMP7 plan is delivering demand management interventions including reducing leakage by 17.5% by 31 March 2025, as well as a smart metering pilot and water efficiency programmes to reduce per capita consumption to 118l/head/day by 2040.

Key changes to the baseline supply demand balance in our plan since 2019 include:

- **Provision of a 1 in 500-year level of resilience:** this return period is the level of service for Level 4 restrictions on customer demand and specifically relates to the use of standpipes and rota cuts.
- New abstraction sustainability reductions: These are applied where a Water Industry National Environment Programme (WINEP) environmental investigation has concluded that an abstraction is not sustainable (i.e., it could have an adverse impact on the environment). In some cases, the annual licensed quantities on our groundwater abstraction licences have been reduced.
- Environmental Destination: to deliver longer term sustainability and environmental resilience in our region.
- Climate change: We have used the latest UK Climate Projections 2018 (UKCP18) which have had a more significant impact on summer river flows, and therefore deployable output, than the previous UK Climate Projections 2009 (UKCP09) did.
- Non-household demand: Our latest non-household demand forecast includes new demand from meat processing (particularly in the Hartismere WRZ) as well as from hydrogen production and new nuclear power stations at Sizewell in Suffolk and Bradwell in Essex.
- New methods: We have used new statistical methods for forecasting supply and demand, specifically the use of stochastics for supply forecasts.

In particular, new abstraction sustainability reductions in the Suffolk WRZs and the requirement for a higher level of resilience have introduced new reductions in supply that could not have been forecast in our WRMP19 plan (as these are new requirements since then). Tables 3 and 4 show the impact of each of these key changes.

These changes have resulted in our revised WRMP24 baseline plan forecasting supply and demand deficits in the dry year annual average (DYAA) as follows:

- Supply and demand deficits for Essex and Hartismere WRZs over the whole planning horizon, when planning to provide a 1 in 500-year level of resilience.
- Deficits from AMP8 and AMP9 for our Blyth and Northern Central WSZs respectively.

The following sections explain in more detail the processes we have followed to identify these supply deficits informing the need for enhanced investment as part of our statutory obligations and long-term plans to provide a secure, sustainable supply of water to our customers, and to protect and enhance the environment.

NORTHUMBRIAN ESSEX& SUFFOLK WATER living water WATER Living water



#### 2.3. OUR BASELINE SUPPLY FORECAST

#### 2.3.1 Water Available For Use (WAFU)

The baseline supply forecast confirms the amount of Water Available For Use (WAFU) in MI/d in each WRZ across the planning period. WAFU is the deployable output (DO) of each source (or group of sources) totalled for the WRZ less:

- future changes to deployable output from sustainability changes, including sustainability licence reductions, long-term environmental destination, a changing climate, and any other expected changes;
- existing transfers and schemes where planning permission is already in place;
- an allowance for short term losses of supply and source vulnerability, known as outage;
- any operational use of water or loss of water through the abstraction-treatment process.

WAFU can then be plotted on a graph against forecast demand (see Section 4 of the rWRMP24 main report) to present a supply demand balance (see Section 6 of the rWRMP24 main report). Where demand is greater than supply in a given year, then a supply deficit is forecast. If demand management options to deliver government targets for leakage reduction and per capita consumption (PCC) do not restore a supply surplus, then new supply schemes may be required.

#### **2.3.2 Summary of baseline supply forecast components**

Table 2 illustrates the various components of WAFU and references to the main rWRMP24 report where these components are defined.

**Enhancement Case (NES14)** 

#### TABLE 2: WAFU COMPONENTS AND RWMP24 OUTCOMES

| WAFU<br>COMPONENT                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RWRMP24 OUTCOME                                                                                                                                                                                                                                                                                                                                                                                                        | RWRMP24<br>REPORT<br>SECTION<br>REFERENCE |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Groundwater<br>DO                         | In line with the EA's WRPG (December 2021) we need<br>to be able to plan to be resilient to a 1 in 200-year drought<br>up to 2039 and to a 1 in 500-year drought to the<br>remainder of the planning horizon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                      | Section 3.2.4                             |
| Sustainable<br>abstraction                | <ul> <li>The sustainability reductions we are including in our WRMP24 are significantly higher than those included in our WRMP19 and derive from four sources:</li> <li>Delivery of agreed licence reductions for some groundwater licences during AMP8, arising from AMP7 WINEP investigations and options appraisals;</li> <li>Application of EA advised licence caps to groundwater sources by March 2030, or earlier for expiring time limited licences, licences with expiring time limited clauses or on licence variation, to reduce the risk of waterbody deterioration under the Water Framework Directive (WFD) (so-called 'No Deterioration' caps);</li> <li>Implementation of new Hands off Flow (HOF) conditions on some surface water abstractions during AMP8, arising from AMP7 WINEP investigations, to achieve Environmental Flow Indicator (EFI) compliance at full licence abstraction.</li> <li>Application of EA advised sustainability reductions and / or stricter HOF conditions for up to nine groundwater and surface water sources by 2026/27 to meet the requirements of the Conservation of Habitats and Species Regulations 2017 (the Habitats Regulations).</li> </ul> | three sources have been included<br>within our baseline and / or preferred<br>plan, the total reduction in<br>groundwater licence by March 2030<br>being 49.06 Ml/d.<br>The potential sustainability reductions<br>for up to nine groundwater and<br>surface water sources by 2026/27 to<br>meet the requirements of the Habitats<br>Regulations, have been included as<br>an adaptive programme within our<br>WRMP24. | Section 3.3                               |
| Long-term<br>environmental<br>destination | While the sustainability reductions identified in the<br>previous section are to meet our current WFD and Habs<br>Regs obligations in the shorter term, we are also working<br>with our regional water resources group, WRE, to identify<br>a longer-term environmental destination for our region, to<br>deliver longer term sustainability and environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | reduction of 39.72 MI/d is forecast as<br>follows:<br>Essex WRZ=2 MI/d,<br>Blyth WRZ=1.72 MI/d,                                                                                                                                                                                                                                                                                                                        | Section 3.4                               |
| NORTHUMB<br>WATER (ivit                   | ng water WATER living water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        | PAGE 15 OF 9                              |

**PR24** 

Enhancement Case (NES14)

| WAFU<br>COMPONENT  | DESCRIPTION                                                                                                                                                                                                                                                                                                         | RWRMP24 OUTCOME                                                                                                                                                                                                                                             | RWRMP24<br>REPORT<br>SECTION<br>REFERENCE |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                    | resilience.                                                                                                                                                                                                                                                                                                         | and Northern Central WRZ = 35.35.                                                                                                                                                                                                                           |                                           |
|                    |                                                                                                                                                                                                                                                                                                                     | This represents an 8% reduction in baseline DO. We have assumed that half of the reductions will be met from 2040/41, and the total reductions from 2045/46.                                                                                                |                                           |
| Climate<br>change  | The UK Climate Projections 2018 (UKCP18) Regional<br>Climate Model (RCM) data have been selected as the<br>most appropriate climate change data set as it<br>supersedes the UK Climate Projections 2009 (UKCP09)<br>data used for WRMP19 climate change analysis.                                                   | Total company level DO for 1:500-<br>year scenarios with medium climate<br>change pre and post 2030 EA licence<br>caps:<br>Groundwater:<br>• Pre 2030 – 73.76 Ml/d<br>• Post 2030- 47.41 Ml/d<br>Surface water:<br>• 2050 –26.97 Ml/d<br>• 2080- 43.58 Ml/d | Section 3.5                               |
| Water<br>transfers | We have an agreement to supply Anglian Water with an export of 3.05 MI/d from seven locations of our Essex WRZ, which has been included in our plans.<br>In Northern Central WRZ we have an export agreement with Anglian Water as well for two bulk supplies totalling 0.73MI/d.                                   |                                                                                                                                                                                                                                                             | Section 3.6                               |
|                    | Our contractual agreement is for 1 MI/d import at Cressing, Essex, which has been included within our plans.                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                           |
|                    | A total of 19 New appointments and variations (NAVs) are either already in place or expected in the near future, served by a total of four appointees. The majority (95%) of NAV's are for new housing developments within specific areas. The agreed exports for these schemes has been included within our plans. |                                                                                                                                                                                                                                                             | _                                         |



Enhancement Case (NES14)

| WAFU<br>COMPONENT                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                | RWRMP24 OUTCOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RWRMP24<br>REPORT<br>SECTION<br>REFERENCE |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Outage<br>allowance                     | For WRMP19, the outage allowance was based on<br>Monte Carlo simulations using a normal distribution to<br>reflect the possible outages at each WTW. For WRMP24<br>this has been updated to a 'histogram approach' where<br>actual outages for each WTW were used to create a<br>discrete distribution, based on bins, for each WTW that<br>was then ran through a Monte Carlo simulation. | DYAA outage allowances for each<br>WRZ under 1 in 200 and 1 in 500 LOS<br>scenarios are as follows:<br>1 in 200 year<br>Essex WRZ:5.7 Ml/d<br>Blyth WRZ 0.68 Ml/d<br>Hartismere WRZ 0.04 Ml/d<br>Northern Central 8.83 Ml/d<br>1 in 500 year<br>Essex WRZ:0 Ml/d<br>Blyth WRZ 0.68 Ml/d<br>Hartismere WRZ 0.04 Ml/d<br>Northern Central 8.83 Ml/d                                                                                                                                                                                             | Section 3.7                               |
| Losses from<br>process and<br>treatment | <ul> <li>In-line with Environment Agency (2021) supporting guidance, we have considered the following components as part of our determination of total raw water and treated water process losses:</li> <li>Raw water losses</li> <li>Raw water operational use</li> <li>Treatment works losses</li> <li>Treatment works operational use</li> </ul>                                        | All treatment works losses and<br>operational use at WTWs in the Essex<br>WRZ are incorporated into our Essex<br>WRZ Aquator® system model. There<br>are losses accounted for at our East<br>London groundwater fed WTWs at<br>Stifford and Roding and the process<br>loss at Langford WTWs. Process<br>losses at all other WTWs are returned<br>to source waters and are re-<br>abstractable. Therefore, there are no<br>losses required to be incorporated<br>into the WAFU calculation in line 8BL<br>as a reduction in deployable output. | Section 3.8                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                            | Suffolk WRZs, as a percentage of<br>total WRZ deployable output, are<br>3.7% for Blyth, 4.5% for Hartismere,                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |



Enhancement Case (NES14)

WAFU DESCRIPTION

COMPONENT

| RWRMP24 OUTCOME | RWRMP24   |
|-----------------|-----------|
|                 | REPORT    |
|                 | SECTION   |
|                 | REFERENCE |

and 11.8% for Northern Central.

#### 2.3.3 Baseline supply assessment results

WAFU values, across the planning horizon, for our WRZs are summarised in Table 3 and 4 below.

| Essex WRZ                   | 2025/26 | 2030/31 | 2035/36 | 2040/41 | 2045/46 |
|-----------------------------|---------|---------|---------|---------|---------|
| DO                          | 428     | 428     | 428     | 428     | 428     |
| Climate Change Impact       | -16.37  | -19.60  | -22.53  | -25.52  | -28.57  |
| Sustainability Reductions   | 0       | -5      | -5      | -5      | -5      |
| Environmental Destination   | 0       | 0       | 0       | -2      | -2      |
| Outage*                     | 0       | 0       | 0       | 0       | 0       |
| Process Losses              | 0       | 0       | 0       | 0       | 0       |
| WAFU (own sources)          | 411.27  | 403.40  | 400.47  | 395.48  | 392.43  |
| Water Imported**            | 1       | 1       | 1       | 1       | 1       |
| Water Exported (incl. NAVs) | -29     | -32     | -11     | -11     | -11     |
| Total WAFU                  | 383.59  | 372.59  | 390.17  | 385.18  | 382.13  |

#### **TABLE 3: WAFU VALUES FOR ESSEX WRZ**

\*Outage under the 1 in 200 DYAA year scenario is 5.70 Ml/d. This is added as a positive number in the WRMP Data Table 3b, line 9.1FP. \*\*Chigwell WTW is now incorporated into our Essex WRZ DO, and so the bulk import of raw water is no longer added into line 2BL.

NORTHUMBRIAN ESSEX&SUFFOLK WATER living water WATER living water



**Enhancement Case (NES14)** 

#### TABLE 4: WAFU VALUES FOR BLYTH WRZ

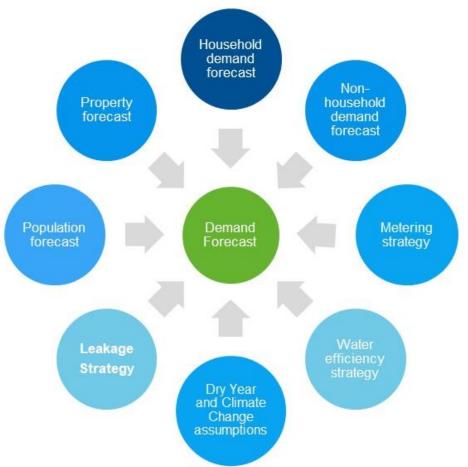
| Blyth WRZ                 | 2025/26 | 2030/31 | 2035/36 | 2040/41 | 2045/46 |
|---------------------------|---------|---------|---------|---------|---------|
|                           |         |         |         |         |         |
| DO                        | 14.68   | 14.68   | 14.68   | 14.68   | 14.68   |
| Climate Change Impact     | 0       | 0       | 0       | 0       | 0       |
| Sustainability Reductions | -1.92   | -6.00   | -6.00   | -6.00   | -6.00   |
| Environmental Destination | 0       | 0       | 0       | -0.86   | -1.72   |
| Outage                    | -0.68   | -0.68   | -0.68   | -0.68   | -0.68   |
| Process Losses            | -0.54   | -0.32   | -0.32   | -0.30   | -0.27   |
| WAFU (own sources)        | 11.54   | 7.68    | 7.68    | 6.84    | 6.01    |
| Water Imported            | 2.27    | 1.39    | 1.39    | 1.32    | 1.32    |
| Water Exported            | -1.38   | -1.38   | -1.38   | -1.38   | -1.38   |
| Total WAFU                | 12.43   | 7.69    | 7.69    | 6.78    | 5.95    |

**Enhancement Case (NES14)** 

#### TABLE 5: WAFU VALUES FOR HARTISMERE WRZ

| Hartismere WRZ            | 2025/26 | 2030/31 | 2035/36 | 2040/41 | 2045/46 |
|---------------------------|---------|---------|---------|---------|---------|
| DO                        | 8.65    | 8.65    | 8.65    | 8.65    | 8.65    |
| Climate Change Impact     | 0       | 0       | 0       | 0       | 0       |
| Sustainability Reductions | -2.27   | -2.27   | -2.27   | -2.27   | -2.27   |
| Environmental Destination | 0       | 0       | 0       | -0.33   | -0.65   |
| Outage                    | -0.04   | -0.04   | -0.04   | -0.04   | -0.04   |
| Process Losses            | -0.30   | -0.29   | -0.29   | -0.24   | -0.20   |
| WAFU (own sources)        | 6.04    | 6.05    | 6.05    | 5.77    | 5.49    |
| Water Imported            | 2       | 1.46    | 1.46    | 1.09    | 0.73    |
| Water Exported            | -0.02   | -0.02   | -0.02   | -0.02   | -0.02   |
| Total WAFU                | 8.02    | 7.49    | 7.49    | 6.84    | 6.20    |

#### TABLE 6: WAFU VALUES FOR NORTHERN CENTRAL WRZ


| Northern Central WRZ      | 2025/26 | 2030/31 | 2035/36 | 2040/41 | 2045/46 |
|---------------------------|---------|---------|---------|---------|---------|
| DO                        | 77.25   | 77.25   | 77.25   | 77.25   | 77.25   |
| Climate Change Impact     | 0       | 0       | 0       | 0       | 0       |
| Sustainability Reductions | -0.80   | -4.85   | -6.85   | -6.85   | -6.85   |
| Environmental Destination | 0       | 0       | 0       | -17.67  | -35.35  |
| Outage                    | -8.83   | -8.83   | -8.83   | -8.83   | -8.83   |
| Process Losses            | -8.75   | -8.38   | -8.23   | -5.86   | -3.49   |
| WAFU (own sources)        | 58.87   | 55.19   | 53.34   | 38.04   | 22.73   |
| Water Imported            | 1.35    | 1.35    | 1.35    | 1.35    | 1.35    |
| Water Exported            | -3.75   | -3.20   | -3.20   | -2.40   | -2.40   |
| Total WAFU                | 56.47   | 53.34   | 51.49   | 36.99   | 21.68   |

Enhancement Case (NES14)

#### 2.4. OUR BASELINE DEMAND FORECAST

#### 2.4.1 Overview of demand forecasting

We produced a normal year baseline demand forecast following the Water Resources Planning Guidance (WRPG) for each of the WRZs Essex, Blyth, Hartismere, Northern Central. The normal year demand forecast is the building block for the dry year and critical period forecasts and is adjusted to provide figures for two climate change scenarios.



#### FIGURE 4: COMPONENTS OF THE DEMAND FORECAST

Our demand forecasts are segmented into:

- measured and unmeasured HH and NHH consumption;
- leakage,
- miscellaneous use,
- and exported water including water use for New Appointments and Variations (NAVs).

They include assumptions and best estimates for areas such as savings associated with metering, customer behaviour changes, and the impact of Covid-19.

NORTHUMBRIAN ESSEX& SUFFOLK WATER living water WATER Living water

Enhancement Case (NES14)

Forecasting the future of demand inherently includes uncertainty. For the long-term water demand forecasting we account for uncertainties including those from; population and housing growth, economic changes, behavioural changes, technological changes, NHH change in water use, weather, climate, government led interventions and private water supplies switching during drought conditions. To understand these uncertainties a suite of demand scenario forecasts has been built covering multiple metering, water efficiency, leakage, and growth options.

#### 2.4.2 Baseline demand forecast component summary

Table 7 illustrates the baseline supply components and links to the main rWRMP24 document where these components are defined.

| Demand      | Description                                          | rWRMP24 Outcome                                          | rWRMP24 |
|-------------|------------------------------------------------------|----------------------------------------------------------|---------|
| forecast    |                                                      |                                                          | section |
| component   |                                                      |                                                          |         |
| Population  | The foundation for demand forecasting is the         | In all WRZ's overall population is forecast to increase. | Section |
| forecasting | base year population served and the projected        | Low, medium and high scenario forecasts have been        | 4.3.1   |
|             | growth of population across the planning horizon,    | created to allow for changes in assumptions and          |         |
|             | this is a highly specialized fundamental part of the | uncertainty within the population forecasts. On average  |         |
|             | demand forecast, along with property growth. We      | for Essex this has resulted in a 22% increase in total   |         |
|             | commissioned specialist consultants Edge             | population to 2049/50 and for Suffolk a 13% increase.    |         |
|             | Analytics to prepare the population and property     |                                                          |         |
|             | growth forecasts for each WRZ in line with best      |                                                          |         |
|             | practice methodology following the requirements      |                                                          |         |
|             | of the WRPG.                                         |                                                          |         |
| Property    | Base year property figures are taken from our        | The number of properties is forecast to increase in all  | Section |
| forecasting | customer billing database. We have selected          | WRZ's. Low, medium and high scenario forecasts have      | 4.3.2   |
|             | three scenarios from Edge Analytics suite of         | been created to allow for changes in assumptions and     |         |
|             | scenarios to give a low, medium and high             | uncertainty within the forecasts. On average for Essex   |         |
|             | property growth forecast. These scenarios are        | this has resulted in a 29% increase over 25 years and    |         |
|             | the same as the population scenarios.                | for Suffolk a 21% increase in household properties.      |         |
| Occupancy   | An overall occupancy figure is determined by the     | The overall occupancy for all households steadily        | Section |
| forecasting | Edge Analytics data through total population         | declines from 2.77 in 2021/22 down to 2.62 in 2049/50    | 4.3.3   |
|             | divided by the total number of billed households     | in Essex (-5.6%) and 2.34 in 2020/21 down to 2.18 in     |         |
|             | for a year to give the overall occupancy rate.       | 2049/50 in Suffolk (-6.9%).                              |         |
|             | However, an overall occupancy figure is at too       |                                                          |         |
|             | high a level to be useful for each of the            |                                                          |         |
|             | households directly. To ascertain what               |                                                          |         |
|             | occupancy to assign to each household metering       |                                                          |         |

#### TABLE 7: DEMAND FORECAST COMPONENTS AND RWRMP24 OUTCOMES





# A3-01 WRMP SUPPLY OPTIONS Enhancement Case (NES14)

| Demand<br>forecast | Description                                                  | rWRMP24 Outcome                                                   | rWRMP24 |
|--------------------|--------------------------------------------------------------|-------------------------------------------------------------------|---------|
| component          |                                                              |                                                                   |         |
|                    | category <sup>3</sup> several occupancy data sources are     |                                                                   |         |
|                    | used to ensure a best estimate for the base year.            |                                                                   |         |
| Household          | The household demand forecast has been                       | In summary the baseline household consumption                     | Section |
| customer           | developed by considering the population in the               | forecast is estimated to increase over the forecasting            | 4.4     |
| demand             | following five groups: Unmeasured customers,                 | period which is predominantly driven by population and            |         |
|                    | Existing metered customers, New Homes, Meter                 | property growth. Measured consumption increases and               |         |
|                    | Optant customers and Selective / Compulsory                  | unmeasured decreases due to the natural optant                    |         |
|                    | metered customers. These groups have been                    | metering.                                                         |         |
|                    | chosen as their consumption characteristics are              |                                                                   |         |
|                    | considered to be distinctly different.                       |                                                                   |         |
|                    | A peer review of the household demand forecasts              |                                                                   |         |
|                    | has been conducted by specialist consultants                 |                                                                   |         |
|                    | Crowder. This review has assured the micro-                  |                                                                   |         |
|                    | component forecasting method employed for                    |                                                                   |         |
|                    | household demand forecast follows the                        |                                                                   |         |
|                    | guidelines for WRMP. Amendments and                          |                                                                   |         |
|                    | recommendations following the peer review have               |                                                                   |         |
|                    | been applied to the household demand forecasts.              |                                                                   |         |
| mpact of           | The impact of the Covid-19 pandemic and the                  | This modelled data from the Artesia study <sup>4</sup> shows that | Section |
| Covid-19           | associated measures to reduce transmission                   | the PCC increase due to Covid-19 is estimated to                  | 4.4.3   |
|                    | continue to affect the activities of society and             | reduce to between 2-3% by 2025 compared to a 6-8%                 |         |
|                    | have had an unforeseen outcome within the                    | increase for 2021/22 (base year). These estimates give            |         |
|                    | water industry. The large impact on water                    | an idea of how consumption will vary for the remainder            |         |
|                    | consumption in homes and businesses as a                     | of the Asset Management Plan (AMP) regarding the                  |         |
|                    | result of restrictions and lockdowns, combined               | effect of Covid-19 and have been applied to the micro-            |         |
|                    | with the hot and dry weather of 2020 has resulted            | component PCC baseline demand forecasts.                          |         |
|                    | in some of the highest peaks in water demand we              |                                                                   |         |
|                    | have ever seen.                                              |                                                                   |         |
| Non                | To understand our current and future NHH                     | The Final Plan option for non-household demand sees               | Section |
| nousehold          | demand we began by analysing our current NHH                 | measured new non-household large users demand                     | 4.5     |
| demand             | demand at an industry sector level. We also                  | delayed until the year 2032/33 in our Suffolk WRZ's               |         |
|                    | contacted all Local Authorities located within our           | only. This is due to the delay in supply available to             |         |
|                    | operating areas to request information they held             | these WRZ's.                                                      |         |
|                    | on new NHH developments and growth. In                       |                                                                   |         |
|                    | addition, we also contacted all our large users <sup>5</sup> |                                                                   |         |

 <sup>&</sup>lt;sup>3</sup> Measured (optant, new build, selective/compulsory, existing) and Unmeasured are the household meter type categories.
 <sup>4</sup> Artesia Consulting (2020) Collaborative Study - The impact of Covid-19 on water consumption
 <sup>5</sup> A large user is defined as a premise using greater than 20,000 cubic meters per year.





# A3-01 WRMP SUPPLY OPTIONS Enhancement Case (NES14)

| Demand<br>forecast<br>component                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rWRMP24 Out                                                                                                                | come                                                                                                                                                                                                                             |                                                                  | rWRMP24<br>section |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|--|
|                                                                                                                                                                                                                       | requesting the provision of expected changes to<br>demand in the short and medium term. Our aim<br>is to continue these conversations with Local<br>Authorities, retailers and large users throughout<br>the WRMP24 process and then into the planning<br>horizon to ensure we have a timely awareness of<br>local hot spots for NHH development.                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                  |                                                                  |                    |  |
| leakage supply pipe leakage (S<br>this area of total leaka<br>leakage is taken from th<br>leakage from our comp<br>base year following<br>performance measures<br>total leakage, including<br>forecast to remain cons | We have conducted research into quantifying<br>supply pipe leakage (SPL) to better understand<br>this area of total leakage. Our base year total<br>leakage is taken from the current reported actual<br>leakage from our company water balance for the                                                                                                                                                                                                                                             | Total forecast I                                                                                                           | eakage<br>TOTAL<br>TOTAL<br>LEAKAGE<br>2024-2050<br>2021/22 (ML/D)<br>(ML/D)                                                                                                                                                     |                                                                  | Section<br>7.3.1   |  |
|                                                                                                                                                                                                                       | base year following the consistent reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Essex                                                                                                                      | 53.34                                                                                                                                                                                                                            | 48.72                                                            |                    |  |
|                                                                                                                                                                                                                       | performance measures <sup>6</sup> . In line with the WRPG                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blyth                                                                                                                      | 1.93                                                                                                                                                                                                                             | 1.54                                                             |                    |  |
|                                                                                                                                                                                                                       | total leakage, including supply pipe leakage, is<br>forecast to remain constant from for the planning<br>horizon for our baseline forecast.                                                                                                                                                                                                                                                                                                                                                         | Hartismere<br>Northern<br>Central                                                                                          | 1.32<br>2.71                                                                                                                                                                                                                     | 0.75                                                             |                    |  |
| Forecasting<br>metering                                                                                                                                                                                               | Our current strategy in both Essex and Suffolk<br>areas is to install meters on customer optants and<br>high-water users. In 1990 it became compulsory<br>for all new homes to be fitted with a water meter.<br>Optant metering is where a customer requests a<br>meter from the company and, assuming the<br>meter can be installed at reasonable cost, the<br>company is required to install a meter free of<br>charge. The customer then pays for their water<br>and sewage on a measured basis. | estimated to be<br>baseline foreca<br>(2100) the base<br>89.79%.<br>In Suffolk by th<br>estimated to be<br>baseline foreca | In Essex by the end of 2024/25 meter penetration is<br>estimated to be 68.51% of domestic properties for our<br>baseline forecast. By the end of the planning horizon<br>(2100) the baseline meter penetration is forecast to be |                                                                  |                    |  |
| Impact of<br>climate<br>change on<br>demand                                                                                                                                                                           | The UKWIR 'Impact of Climate Change on Water<br>Demand <sup>7</sup> ' results have been used to calculate<br>forecasts of climate change impacts on<br>household water demand. This UKWIR project<br>used statistical analysis on five case studies<br>looking at household and micro-component water<br>consumption and non-household water<br>consumption.                                                                                                                                        | component of                                                                                                               | demand affected<br>demand is not exp                                                                                                                                                                                             | demand is the only<br>by climate change.<br>ected to be affected | Section<br>4.10    |  |

<sup>6</sup> UKWIR (2017) Consistency in reporting performance measures
 <sup>7</sup> UKWIR (2013) Impact of Climate Change on Water Demand



ESSEX&SUFFOLK WATER living water



Enhancement Case (NES14)

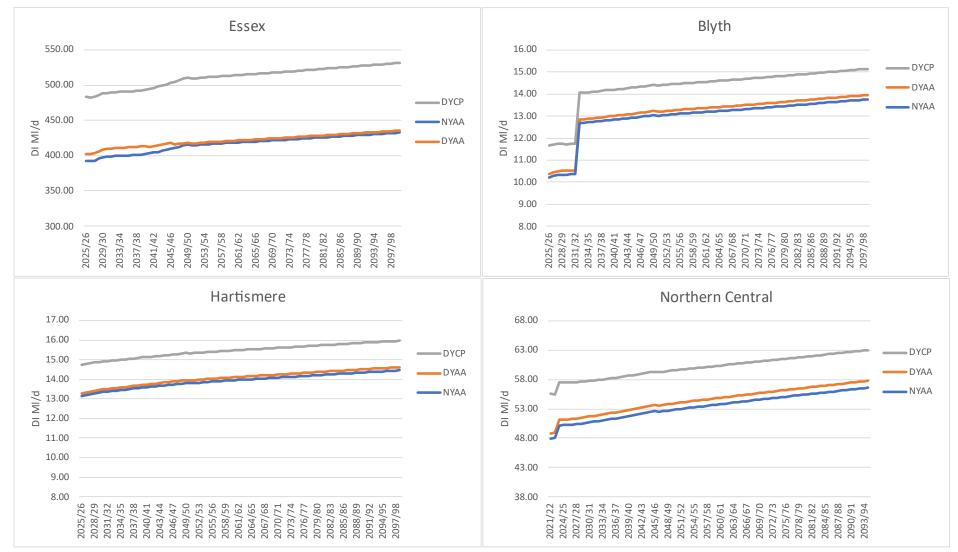
| Demand     | Description                                                      | rWRMP24 Outcome                                   | rWRMP24 |  |
|------------|------------------------------------------------------------------|---------------------------------------------------|---------|--|
| forecast   |                                                                  |                                                   | section |  |
| component  |                                                                  |                                                   |         |  |
| Water      | Included in our plan are three core elements of                  | Household water efficiency                        | Section |  |
| Efficiency | water efficiency delivery:                                       | Low scenario-0.49                                 | 7.3.3   |  |
|            | <ul> <li>Household water efficiency- PCC of 110 l/h/d</li> </ul> | Medium scenario-0.97                              |         |  |
|            | by 2050                                                          | High scenario-1.08                                |         |  |
|            | <ul> <li>Smart metering programme- PCC of 110 l/h/d</li> </ul>   | Medium enhanced-1.31                              |         |  |
|            | by 2050                                                          |                                                   |         |  |
|            | • Business demand- reduce NHH demand by                          | Non-Household water efficiency                    |         |  |
|            | 9% by 2038                                                       | <ul> <li>Total in AMP saving MI/d-1.45</li> </ul> |         |  |
|            | The interventions are the output of fully costed                 | C C                                               |         |  |
|            | option appraisal following the appropriate                       |                                                   |         |  |
|            | methodologies and guidelines provided by the                     |                                                   |         |  |
|            | Environment Agency (EA).                                         |                                                   |         |  |

#### 2.4.3 Baseline demand forecast results

Normal year forecasts have been made against a 2020/21 base year, which has been amended from the published Annual Regulatory report figures to incorporate the rebasing process for properties, as well as normalising the 2020/21 per capita consumptions (PCCs). This ensures a smooth projection from the base year into the forecast.

The baseline demand forecast incorporates the following conditions:

- Customer demand without any further water efficiency or metering interventions from 2025/26 onwards.
- Normal rates of optant, selective and meter replacements from 2025/26
- Leakage remains static from 2025/26
- Population and property growth forecast using Local Authority (LA) Housing Planned growth medium scenario.
- NHH growth forecast with service industries driven by LA Housing Planned growth and new large users requested volumes.
- The impact of climate change on customers' behaviour
- Government led interventions applied to household consumption.


Normal Year, Dry Year and Critical Period baseline demand forecasts for our WRZs are illustrated in Figure 5.





**Enhancement Case (NES14)** 

#### FIGURE 5: BASELINE DEMAND FORECAST DI FOR CRITICAL PERIOD (DYCP), DRY YEAR (DYAA) AND NORMAL YEAR (NYAA) SCENARIOS



NORTHUMBRIAN WATER (iving water WATER (iving water

28 September 2023 PAGE 26 OF 91

**Enhancement Case (NES14)** 

#### 2.5. BASELINE SUPPLY DEMAND FORECAST SUMMARY

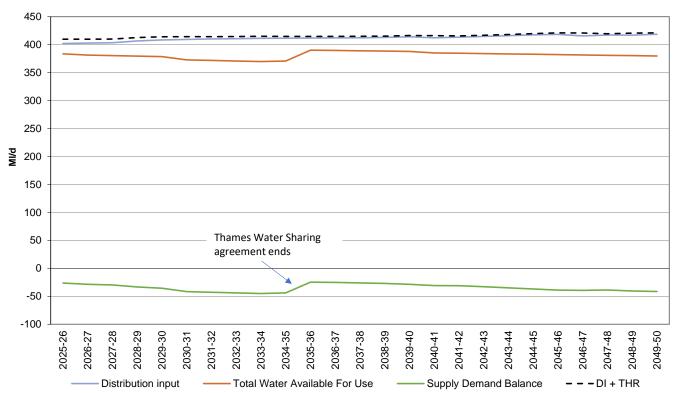
#### 2.5.1 Baseline Supply Demand Overview

Our baseline dry year supply and demand (SDB) forecasts have been used to produce a Baseline Dry Year Supply Demand Balance for each of our WRZs. All the known changes to the supply forecast and the known baseline demand management policies to 2025 have been included in these calculations.

The baseline supply demand balance calculation is used to identify whether a WRZ is predicted to have a supply deficit at any point over the planning horizon. For each WRZ, a supply demand balance graph has been prepared. The supply forecast is a forecast of Water Available for Use (WAFU) and the demand forecast is a forecast of Distribution Input (DI).

#### 2.5.2 Baseline dry year annual average (DYAA) supply demand balance

Here we have included graphs illustrating the SDB forecast for the dry year annual average scenarios. For critical period please see section 6.3 in the revised draft WRMP24 main report. The key features on each of the graphs are as follows:


- Demand Forecast (the blue line): This is known as DI and includes all household and non-household demand and among other aspects, an allowance for leakage from our network and from customer's homes.
- Target Headroom (THR) (the black dashed line): This is an allowance for uncertainties in both the supply and demand forecasts and has been added to the Distribution Input forecast.
- Supply Forecast (the orange line): This is known as WAFU and forecasts how much water is available for use to meet Distribution Input. It takes account of abstraction licence sustainability reductions and other reductions on deployable output (DO).

#### **Essex WRZ**

The baseline supply demand balance graph shows that the Essex WRZ baseline DYAA forecast is a deficit for the whole planning horizon. The 20 MI/d step up in 2035/36 of the Total WAFU is a result of our current water sharing agreement with Thames Water expiring. Household and Non-household growth results in a gradual increase in Distribution Input from the early 2040s through to the end of the planning period. The gradual decline in WAFU is due to climate change and a reduction in summer river flows.

**Enhancement Case (NES14)** 

#### FIGURE 6: ESSEX WRZ DYAA SUPPLY DEMAND BALANCE GRAPH



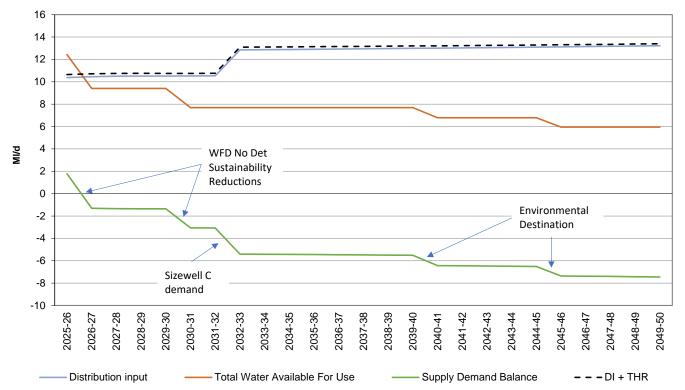


#### TABLE 8: BASELINE DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE ESSEX WRZ

| Essex WRZ                | End of<br>AMP8 | End of<br>AMP9 | End of AMP10 | End of AMP11 | End of AMP12 |
|--------------------------|----------------|----------------|--------------|--------------|--------------|
|                          | 2029/30        | 2034/35        | 2039/40      | 2044/45      | 2049/50      |
| Supply Demand<br>Balance | -35.51         | -43.87         | -28.42       | -36.81       | -41.24       |

#### **Blyth WRZ**

The supply demand balance graph starts with a supply surplus but only in the first year of the planning horizon. From 2026/27 the WRZ falls into deficit as a result of Water Framework Directive (WFD) No Deterioration Sustainability Reductions. This is because two of our time limited abstraction licences expire in 2026 and the Environment Agency (EA) has indicated that the annual licensed quantity will be capped to a recent actual utilisation level. This removes all of our supply headroom until our Best Value Plan demand management and supply options are operational.


The zone goes further into deficit in 2030/31 when AMP7 abstraction licences sustainability reductions are implemented, resulting in a total loss of 6 MI/d of DO. The deficit increases in 2032 due to a step increase in demand when we will start



**PR24** 

supplying Sizewell C with 2.2 MI/d as an annual average and 2.8 MI/d as a peak daily. It should be noted that this is a baseline deficit and that our final plan allows us to supply Sizewell C and forecasts a supply surplus. The two further steps down in SDB in 2040 and 2045 result from the Business As Usual Plus (BAU+) Environmental Destination licence reductions being made.

#### FIGURE 7: BLYTH WRZ DYAA SUPPLY DEMAND BALANCE GRAPH



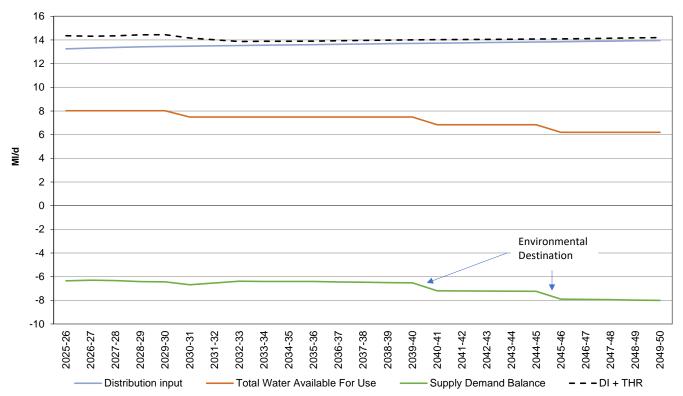
#### Blyth WRZ - DYAA Baseline Water Supply-Demand Balance

#### TABLE 9: BASELINE DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE BLYTH WRZ

|                          | End of  |
|--------------------------|---------|---------|---------|---------|---------|
| Blyth WRZ                | AMP8    | AMP9    | AMP10   | AMP11   | AMP12   |
|                          | 2029/30 | 2034/35 | 2039/40 | 2044/45 | 2049/50 |
| Supply Demand<br>Balance | -1.35   | -5.43   | -5.51   | -6.51   | -7.45   |

#### Hartismere WRZ

The zone is in deficit from the start of the planning period due to the inclusion of new requests for water from non-household businesses on Eye Industrial Estate. This results in a supply deficit for the whole planning horizon. The deficit is increased by 2.27 Ml/d by incorporation of WFD No Deterioration Sustainability Reductions, which are due to be implemented from


| NORTHUMBRIAN       | ESSEX& SUFFOLK     |               |
|--------------------|--------------------|---------------|
| WATER (iving water | WATER living water | PAGE 29 OF 91 |
|                    |                    |               |

**Enhancement Case (NES14)** 

the start of the planning horizon. This is because all of the Hartismere sources are covered by limited abstraction licences, which expire before the start of AMP8 and the Environment Agency has indicated that these will be capped to recent utilisation levels on renewal. Additionally, there are two further steps down in WAFU because of BAU+ Environmental Destination licence reductions in 2040 and 2045.

To achieve an SDB, our Hartismere WRZ, requires both a moratorium on new non-household demand where the water is used for non-domestic purposes until 2032, and an exemption under Regulation 19 of the WFD to delay the implementation of sustainability reductions until replacement sources of water are available.

#### FIGURE 8: BLYTH WRZ DYAA SUPPLY DEMAND BALANCE GRAPH

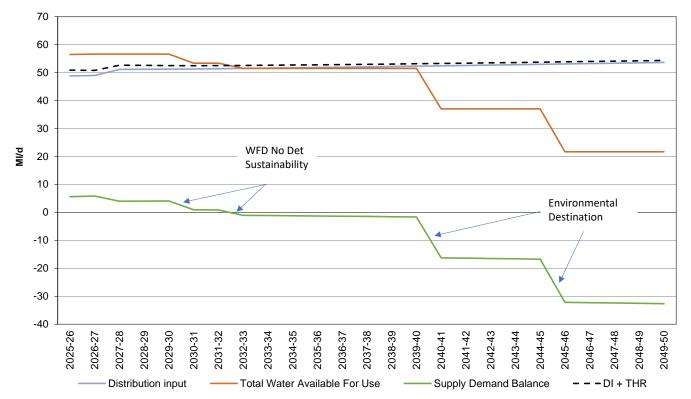


#### Hartismere WRZ - DYAA Baseline Water Supply-Demand Balance

#### TABLE 10: BASELINE DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE HARTISMERE WRZ

| Hartismere WRZ           | End of  |
|--------------------------|---------|---------|---------|---------|---------|
|                          | AMP8    | AMP9    | AMP10   | AMP11   | AMP12   |
|                          | 2029/30 | 2034/35 | 2039/40 | 2044/45 | 2049/50 |
| Supply Demand<br>Balance | -6.43   | -6.40   | -6.52   | -7.24   | -8.01   |

NORTHUMBRIAN WATER Living water




Enhancement Case (NES14)

#### **Northern Central**

The supply demand balance (SDB) graph shows a small surplus until 2031/32 and a deficit thereafter. Forecast demand includes future increases in demand from food processing and cosmetics businesses. There are five steps down in the Total WAFU, reflected in the SDB. The first in 2027/28 is because of an increase in non-household demand, the next two in 2030/31 and 2032/33 because of Sustainability Reductions and then a further two because of BAU+ Environmental Destination licence reductions in 2040 and 2045.

#### FIGURE 9: NORTHERN CENTRAL WRZ DYAA SUPPLY DEMAND BALANCE GRAPH





#### TABLE 11: BASELINE DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE HARTISMERE WRZ

|                          | End of  |
|--------------------------|---------|---------|---------|---------|---------|
| Northern Central WRZ     | AMP8    | AMP9    | AMP10   | AMP11   | AMP12   |
|                          | 2029/30 | 2034/35 | 2039/40 | 2044/45 | 2049/50 |
| Supply Demand<br>Balance | 4.08    | -1.20   | -1.66   | -16.72  | -32.63  |

**Enhancement Case (NES14)** 

#### 2.5.3 WRMP19 and WRMP24 WAFU comparison

There are differences in our WAFU forecast between WRMP19 and WRMP24 for the years 2025/26, and 2049/50. Table 12 shows a comparison for baseline WAFU components for 2025/26 and Table 13 shows the difference by the end of the WRMP24 planning horizon in 2049/50. The reasons for the key differences are:

- Deployable Output: There has been a reduction in the Essex WRZ due to a move to stochastic modelling along with increasing resilience from 1-200 to 1-500. We have also now included Chigwell, Stifford and Roding WTWs in the Essex WRZ Aquator model, so the DO includes the 91 MI/d bulk import into Chigwell WTW previously entered into line 2BL of the planning tables.
- Climate Change: The increased impact of climate change in the Essex WRZ is due to a move from UKCP09 to UKCP18 projections.
- Sustainability Reductions: The sustainability reductions we are including in our WRMP24 are significantly higher than those included in our WRMP19.
- Environmental Destination: This is a new component of the WAFU calculation for WRMP24.
- **Outage:** The differences are due to changes to methodology to plan for a drought period.
- Process losses: The differences reflect use of the latest process loss data and are recalculated each time DO changes over the planning horizon due to sustainability changes. Process losses for the Essex WRZ are now incorporated into the Aquator system model.
- Water exported: We have used maximum contractual volumes for New Appointments and Variations (NAVs) in our WRMP24 whereas our WRMP19 forecast actual utilisation.
- **Target Headroom:** We have updated our assessment of component S5 Gradual Pollution and have introduced a range of resilience profiles (high/medium/low).
- DI: The increase in per capita consumption (PCC) is mainly due to Covid-19 and an increase in population (~20,000 additional people than forecast in Price Review 2019 (PR19)). The pandemic has affected a number of customer behaviours.

**Enhancement Case (NES14)** 

#### TABLE 12: WRMP19 AND WRMP24 BASELINE WAFU FORECAST COMPARISON FOR 2025/26

| Baseline 2025/26          | Esse   | Essex WRZ |        | Blyth WRZ |        | Northern Central<br>WRZ |        | Hartismere WRZ |  |
|---------------------------|--------|-----------|--------|-----------|--------|-------------------------|--------|----------------|--|
|                           | WRMP19 | WRMP24    | WRMP19 | WRMP24    | WRMP19 | WRMP24                  | WRMP19 | WRMP24         |  |
| DO                        | 396.90 | 428.00    | 14.68  | 14.68     | 80.16  | 77.25                   | 8.65   | 8.65           |  |
| Climate Change            | 3.20   | -16.73    | 0.00   | 0.00      | -0.75  | 0.00                    | 0.00   | 0.00           |  |
| Sustainability reductions | 0.00   | 0.00      | -0.20  | -1.92     | -1.30  | -0.80                   | 0.00   | -2.27          |  |
| Environmental             |        | 0.00      |        | 0.00      |        | 0.00                    |        | 0.00           |  |
| Destination               | -      | 0.00      | -      | 0.00      | -      | 0.00                    | -      | 0.00           |  |
| Process losses            | -0.27  | 0.00      | -0.69  | -0.54     | -3.14  | -8.75                   | -0.30  | -0.30          |  |
| Outage                    | -29.93 | 0.00      | -0.68  | -0.68     | -1.36  | -8.83                   | -0.71  | -0.04          |  |
| Target Headroom           | 32.82  | 7.62      | 1.21   | 0.27      | 5.27   | 2.05                    | 0.77   | 1.11           |  |
| Water Imported            | 92.00  | 1.00      | 1.35   | 2.27      | 1.35   | 1.35                    | 2.00   | 2.00           |  |
| Water Exported            | -24.93 | -28.68    | -1.39  | -1.38     | -4.09  | -3.75                   | 0.00   | -0.02          |  |
| DI                        | 387.80 | 402.10    | 9.11   | 10.38     | 46.80  | 48.79                   | 7.57   | 13.26          |  |
| SDB                       | 16.36  | -26.13    | 2.75   | 1.78      | 18.81  | 5.63                    | 1.29   | -6.35          |  |
| Change                    |        | -42.49.01 |        | -0.97     |        | -13.18                  |        | -7.64          |  |

#### TABLE 13: WRMP19 AND WRMP24 BASELINE WAFU FORECAST COMPARISON FOR 2049/50.

| Baseline 2049/50             | Essex WRZ |        | Blyth WRZ |        | Northern<br>WRZ | Central | Hartismere WRZ |        |
|------------------------------|-----------|--------|-----------|--------|-----------------|---------|----------------|--------|
|                              | WRMP19    | WRMP24 | WRMP19    | WRMP24 | WRMP19          | WRMP24  | WRMP19         | WRMP24 |
| DO                           | 396.90    | 428.00 | 14.68     | 14.68  | 80.16           | 77.25   | 8.65           | 8.65   |
| Climate Change               | 4.70      | -31.04 | 0.00      | 0.00   | -1.10           | 0.00    | 0.00           | 0.00   |
| Sustainability reductions    | 0.00      | -5.00  | -0.20     | -6.00  | -1.30           | -6.85   | 0.00           | -2.27  |
| Environmental<br>Destination | 0.00      | -2.00  | 0.00      | -1.72  | 0.00            | -35.35  | 0.00           | -0.65  |
| Process losses               | -0.27     | 0.00   | -0.69     | -0.27  | -2.90           | -3.49   | -0.30          | -0.20  |
| Outage                       | -29.93    | 0.00   | -0.68     | -0.68  | -1.36           | -8.83   | -0.71          | -0.04  |
| Target Headroom              | 21.31     | 2.40   | 0.81      | 0.17   | 4.27            | 0.69    | 0.53           | 0.25   |
| Water Imported               | 92.00     | 1.00   | 1.35      | 1.32   | 1.35            | 1.35    | 2.00           | 0.73   |
| Water Exported               | -5.67     | -11.30 | -1.39     | -1.38  | -4.09           | -2.40   | 0.00           | -0.02  |
| DI                           | 402.15    | 418.50 | 9.17      | 13.22  | 49.25           | 53.63   | 7.86           | 13.96  |
| SDB                          | 34.28     | -41.24 | 3.09      | -7.45  | 17.23           | -32.63  | 1.25           | -8.01  |
| Change                       |           | -75.52 |           | -10.54 |                 | -49.86  |                | -9.26  |

**Enhancement Case (NES14)** 

#### **2.5.4 Link to long term strategy**

This investment is needed as part of the 'ensuring sustainable water supplies' investment area under our <u>Long-Term</u> <u>Strategy</u> (LTS) core pathway. We have identified the need for this investment through the regional and company level water resource management planning process.

Demand management through reducing leakage, increasing metering, and supporting greater water efficiency is a necessary and efficient part of our long-term plan to ensure we can continue to balance water supply and demand over the long-term.

This investment is needed to deliver our long-term targets from the <u>25-Year Environment Plan</u> and the rates of improvement supported by this case will allow us to follow the right trajectory to meeting the long-term targets that we set out in our long-term delivery strategy (NES\_LTDS). This is aligned to our long term WRMP target to:

• Make sure all household customers continue to have a sufficient and secure supply of water ("plan to be resilient to 1 in 500-year drought").

Our WRMP supply options are part of our overall WRMP Best Value Plan which includes our demand management options, which are designed to:

- reduce household water consumption (per capita consumption to 122 l/p/d by 2038 and 110 l/p/d by 2050);
- reduce non-household water demand by 9% by 2038 excluding growth (from 2019/20 levels); and
- reduce leakage by 55% by 2050 in the North East (to 61.1Ml/d) and 40% in Essex and Suffolk (to 40.1Ml/d) so that we achieve the national target of 50% companywide (from 2017/18).

We consider this is low / no regret investment because it is needed:

- to meet statutory requirements in 2025-30, and
- to meet Ofwat's high common reference scenario for water demand.

We therefore consider this investment is necessary in 2025-30 to deliver our long-term delivery strategy. This investment represents a step along the path towards delivering our long-term targets and so we expect further investment to be required at least between 2030 and 2050 to continue to reduce leakage, increase metering and promote water efficiency. This would be required under any future scenario and so is included in our core pathway in our WRMPs and our long-term delivery strategy.

#### **2.6. CUSTOMER SUPPORT**

Water Resources East, the regional planning group, carried out some <u>early customer engagement in June 2021</u>. This looked at customer views on the drivers behind the need for new water supplies in the region, including environmental ambition. This concluded that customers view environmental ambition is important – but for the general public and NHH, not at any cost:

NORTHUMBRIAN ESSEX8.SUE WATER living water WATER Living water

- Customers supported restoring past damage, but the cost implications of improving environments means that few customers support the highest 'environmental destination'.
- Stakeholders with an environmental remit do support the highest environmental destination.

We also undertook <u>customer research in July 2022</u> on our draft WRMP. This tested customers' awareness and views on Essex and Suffolk being designated as water stressed areas.

The majority of the sample overall were not aware that Essex and Suffolk are water stressed areas. This confirmed what we found in the focus groups, where only a small proportion knew about this and where respondents only associated drought with developing countries. Finding out about this made people realise water is a finite resource and made it more real, spurring them on to act now and to be more mindful.

In December 2022, we <u>discussed our statutory obligations to secure water supply in Essex and Suffolk</u> with our customers in those area, as part of our discussions with customers about complex bill drivers. This was deliberative research, to understand more complex views before our affordability and acceptability research in 2023.

Customers preferred a reservoir solution, as they felt this would be better value for money in the long-term and there would be a lower cost of maintenance. Participants in Essex recognised the environmental benefits of reservoirs, including local wildlife and tourism and school trips. They felt that investing in a reservoir could add public value to the area (participants had also been discussing public value earlier as part of the same research).

Customers were more concerned about the effluent reuse plant that they discussed (at Lowestoft), as it had a much higher level of maintenance and there were concerns about the technology and higher energy use. Customers felt that energy prices were unpredictable, and this could move the problem to future generations. They were also concerned that the plant would lack public value.

Customers agreed that detailed work would be needed for both options in order to make sure the right decision would be made. However, they thought that a decision needed to be made sooner than 2026. Some customers suggested that a hybrid solution could be an alternative option, taking elements of both the reservoir and effluent plant. Customers asked us to choose the reservoir as this had more benefits.

Our PR24 Board sub-group discussed these findings alongside our draft WRMP, and we subsequently pushed back to regulators on the requirement to meet sustainable abstraction in 2032 – as our customers supported a reservoir option as it had more benefits including public value. We agreed that a reservoir had more benefits, but it would not meet the statutory requirements. We describe how we discussed hybrid options with the EA, as well as exploring smaller reservoirs that could be done in a phased way, in the sections below.

**Enhancement Case (NES14)** 

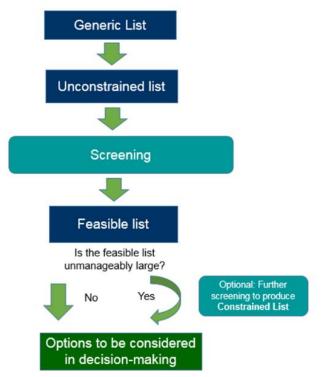
In our <u>qualitative affordability and acceptability research</u> (NES49), we discussed the phasing of water supply options. Customers in our Essex and Suffolk regions thought that water supplies were an important priority because these were water stressed areas. Customers were sceptical that a reservoir could be achieved by 2030, but most customers agreed with our plan to provide water supply options in 2025-30, describing this as balancing need with affordability. Some customers thought we should consider a higher phasing, but with no clear bill impacts customers felt that the "medium" option (used in our business plan) was the right one.

Customers noted that they did not have a genuine choice on water supply options, as statutory obligations were the overriding factor. They also discussed the cumulative impacts of investments alongside other enhancements, acknowledging the conflict between wanting to allow bill increases for necessary investments as a citizen but also having to manage personal finances as a customer.

Finally, in our <u>quantitative affordability and acceptability research</u> (NES50), customers supported these investments as part of our preferred plan – 74% of customers thought our plan was acceptable.

# 3. BEST SUPPLY ENHANCEMENT OPTIONS FOR CUSTOMERS

### 3.1. DEVELOPMENT OF SUPPLY OPTIONS


### 3.1.1 Options Development Methodology Overview

Our methodology for the identification, development and screening of water supply options was developed to align with the process set out in the Water Resources Planning Guideline (WRPG), which was updated on 2 July 2022. The WRPG requires water companies to review all possible options that could contribute to deficit reduction and include all that are likely to be technically feasible within an unconstrained list. The unconstrained list is then screened to remove options with unalterable constraints that make them unsuitable for promotion. Options on the resulting feasible list are further assessed to feed into programme appraisal and optimisation of a best value plan. FIGURE 10 illustrates the phases in the options screening process from generic options to feasible options for consideration as part of decision-making processes and identification of the preferred options for our best value plan.

**Enhancement Case (NES14)** 



### FIGURE 10: OPTIONS APPRAISAL METHODOLOGY

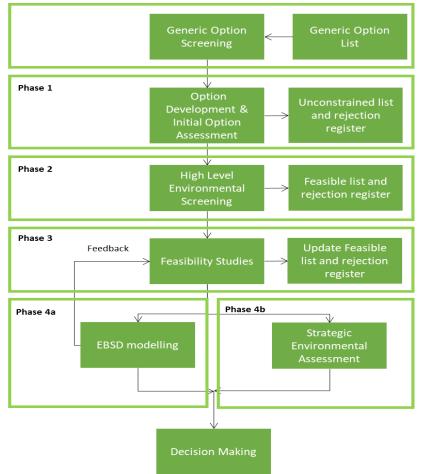


Generic List: A list of all possible options types

Unconstrained list: All possible schemes and options available to the company based on the generic list

**Screening** to remove any options with unalterable environmental or planning constraints

**Feasible list:** Options which are technically feasible and subject to no unalterable planning constraints


**Further screening:** You should find a balance in your feasible list between having a manageable number of options and having the greatest choice for assessment. The feasible list should include sufficient options to allow real choices when assessing the preferred programme. This subset list should be called your **Constrained list**. **Enhancement Case (NES14)** 

# PR**24**

### 3.1.2 Summary of option screening approach

FIGURE 11 illustrates how the WRPG process has been adopted to undertake a supply option screening approach for ESW. Table 14 summarises the option screening activity from initial generic option screening through to Phase 2 high level environmental screening.

### FIGURE 11: OPTIONS APPRAISAL METHODOLOGY



**Enhancement Case (NES14)** 



### TABLE 14: SUMMARY OF INITIAL OPTION SCREENING APPROACH

| Option screening                   | Overview                                                                                              | rWRMP main      |
|------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|
| stage                              |                                                                                                       | report section  |
| Generic option                     | A generic option list was developed using UK Water Industry Research (UKWIR) guidance                 | Section 7.2.2.1 |
| screening                          | to identify all possible options available to each WRZ. To identify viable options, the generic       |                 |
|                                    | option list was screened using the following criteria:                                                |                 |
|                                    | • Can the option be practically deployed i.e., is the source of water available in the WRZ?           |                 |
|                                    | <ul> <li>Is it possible to define the option spatially?</li> </ul>                                    |                 |
|                                    | Does the technology exist to develop the option (assumed to be post pilot study stage                 |                 |
|                                    | in the UK or a country with a similar regulatory regime)?                                             |                 |
|                                    | <ul> <li>Does the supply chain exist to deliver the option?</li> </ul>                                |                 |
|                                    | • Are there any other technical issues that prevent deployment of this option in the WRZ?             |                 |
|                                    | • Are there any environmental issues that prevent deployment of this option in the WRZ?               |                 |
| Phase 1: Option                    | Viable options from Generic Option Screening were further developed to form an                        | Section 7.2.2.2 |
| development and initial assessment | unconstrained option list, with sufficient level of definition to allow Phase 2 High-Level Screening. |                 |
|                                    | Option development in this phase focussed on defining specific options in terms of the                |                 |
|                                    | location, maximum output, and spatial impact.                                                         |                 |
|                                    | A basis of design/assumption was developed for each option considering the following                  |                 |
|                                    | factors:                                                                                              |                 |
|                                    | <ul> <li>industry best practices and standards;</li> </ul>                                            |                 |
|                                    | consider regional options;                                                                            |                 |
|                                    | <ul> <li>consider neighbouring water company options;</li> </ul>                                      |                 |
|                                    | <ul> <li>availability of source water;</li> </ul>                                                     |                 |
|                                    | • resilience;                                                                                         |                 |
|                                    | water quality issues;                                                                                 |                 |
|                                    | • impact on water bodies;                                                                             |                 |
|                                    | environmental designations;                                                                           |                 |
|                                    | • availability of land (at this stage the review is limited to identifying undeveloped land, no       |                 |
|                                    | assessment is made of competing development or ownership);                                            |                 |
|                                    | existing infrastructure;                                                                              |                 |
|                                    | <ul> <li>proximity to receiving WRZ / supply node;</li> </ul>                                         |                 |
|                                    | customer perception; and                                                                              |                 |
|                                    | <ul> <li>stakeholder support / opposition.</li> </ul>                                                 |                 |
|                                    | Options that failed to satisfactorily meet these factors were rejected and added to the               |                 |
|                                    | rejection register.                                                                                   |                 |

**Enhancement Case (NES14)** 



| Option screening | Overview                                                                                         | rWRMP main      |
|------------------|--------------------------------------------------------------------------------------------------|-----------------|
| stage            |                                                                                                  | report section  |
| Phase 2: High    | A Red-Amber-Green (RAG) approach against environmental topics was used to screen out             | Section 7.2.2.3 |
| level            | options that are shown to have red flags against significant criteria. These criteria align with |                 |
| environmental    | those applied for WRE high-level assessments.                                                    |                 |
| screening        | Any options which were screened out at this stage were added to the rejection register.          |                 |

## 3.1.3 Phase 3: Feasibility Studies

### **Engineering and Design & Financial Cost Assessment**

The purpose of this phase was to undertake detailed engineering design and costing to enable an assessment of the feasibility of proposed options. All options that successfully passed High Level Screening were subject to outline engineering design including developing consistent option information as the basis for financial cost assessment and later stages.

The detailed Phase 3 studies structured around the following option categories:

- 1. Aquifer Storage and Recovery
- 2. New water Reuse
- 3. Existing Water Reuse Enhancement
- 4. New Reservoirs
- 5. Desalination
- 6. Transfer Options
- 7. Groundwater Options

A range of factors were considered within these categories as appropriate including:

- potential impact of climate change;
- timescales for delivery;
- expected yield over 80 years;
- flexibility of operation;
- transfer tie-ins;
- hydraulics;
- route planning and critical crossings;
- site services;
- treatment; and
- risk assessment.

### Supply option summaries

Table 15 confirms the total number of options that have been assessed and of those, the number that have been rejected because they were not considered feasible, and the number that have proceeded to the least cost and best value decision-making process.

### **TABLE 15: SUMMARY OF OPTIONS**

|                                                                            | Total Number of Options |          |           |  |
|----------------------------------------------------------------------------|-------------------------|----------|-----------|--|
| Option Type                                                                | Assessed                | Rejected | Proceeded |  |
| Artificial Storage and Recovery wells / Aquifer Storage and Recovery (ASR) | 20                      | 19       | 1         |  |
| New Water Reuse Options                                                    | 11                      | 6        | 5         |  |
| Existing Water Reuse Enhancements                                          | 1                       | -        | 1         |  |
| New Reservoirs                                                             | 3                       | 2        | 1         |  |
| Desalination                                                               | 14                      | 2        | 12        |  |
| Water Transfer                                                             | 64                      | 2        | 62        |  |
| Groundwater Sources                                                        | 3                       | 1        | 2         |  |
| Nitrate Treatment                                                          | 6                       | -        | 6         |  |
| Pump Options                                                               | 2                       | -        | 2         |  |
| Upgrade Options                                                            | 2                       | 2        | 2         |  |
| UV Treatment                                                               | 1                       | -        | 1         |  |
| Total Number                                                               | 127                     | 34       | 95        |  |

At the macro level, there is a limited number of feasible supply option types which reflects the significant challenge in East Anglia which is a serious Water Stressed Area, and which has the highest number of water dependant Sites of Special Scientific Interest (SSSI) in the country. Consequently, there is no groundwater available for abstraction licensing and all our Norfolk and Suffolk groundwater licences are subject to sustainability reductions either at renewal for time limited licenses, else by 2030. Surface water is available but only at high flows which means new surface water abstractions must be developed with winter storage reservoirs.

Our feasible options are defined in Table 16 and Table 17 and cover a range of different option types as well as different sizes of option types and have provided us with real choices in the selection of preferred Best Value Plan. Importantly, all options contribute to us meeting our Water Resource Management Plan 2024 (WRMP24) objectives.

**Enhancement Case (NES14)** 



### TABLE 16: FEASIBLE WATER SUPPLY OPTIONS – ESSEX

| No. | Option UID   | Option Name     | Option Description                                                                | Option Type  | Deployable<br>Output (MI/d) | Earliest start<br>date |
|-----|--------------|-----------------|-----------------------------------------------------------------------------------|--------------|-----------------------------|------------------------|
| 1   | ESW-ABS-002  | Linford New     | Reinstatement of abandoned artesian well, no network upgrade should be            | Abstraction  | 7                           | 2027                   |
|     |              | WTW             | required. New borehole drilled to make use of an additionally available 3.5       |              |                             |                        |
|     |              |                 | MI/d on the licence. Assume existing borehole provides 3.5 MI/d and new           |              |                             |                        |
|     |              |                 | borehole provides 3.5 MI/d giving 7 MI/d overall.                                 |              |                             |                        |
| 2   | ESW-ABS-003  | Linford New     | Reinstatement of abandoned artesian well, and WTW capacity to 10MI/d.             | Abstraction  | 10                          | 2027                   |
|     |              | WTW 10 MI/d     | Requires drilling of up to two new boreholes, a raw water transfer to a new       |              |                             |                        |
|     |              |                 | water treatment works, connection to network and wastewater discharge             |              |                             |                        |
|     |              |                 | connection. For WRMP design and costing purposes, it has been assumed             |              |                             |                        |
|     |              |                 | that no network upgrade should be required.                                       |              |                             |                        |
| 3   | ESW-ASR-004A | Abberton ASR    | ASR scheme located near Abberton Reservoir. Single borehole located               | ASR          | 2.4                         | 2032                   |
|     |              | with additional | adjacent to Layer WTW. Additional treatment capacity included at the              |              |                             |                        |
|     |              | treatment       | borehole site. It is assumed that there is sufficient capacity in the River Stour |              |                             |                        |
|     |              | capacity        | to Abberton Reservoir transfer as well as the Abberton Reservoir to Layer         |              |                             |                        |
|     |              |                 | WTW transfer. 80% recovery meaning 3 MI/d is injected and 2.4 MI/d is             |              |                             |                        |
|     |              |                 | subsequently abstracted from the borehole.                                        |              |                             |                        |
| 4   | ESW-ASR-004B | Abberton ASR    | ASR scheme located near Abberton Reservoir. Single borehole located               | ASR          | 2.4                         | 2032                   |
|     |              | using existing  | adjacent to Layer WTW. No additional treatment capacity included at the           |              |                             |                        |
|     |              | Layer WTW       | borehole site, as it is assumed that the treatment at Layer WTW will be           |              |                             |                        |
|     |              |                 | sufficient. It is assumed that there is sufficient capacity in the River Stour to |              |                             |                        |
|     |              |                 | Abberton Reservoir transfer as well as the Abberton Reservoir to Layer WTW        |              |                             |                        |
|     |              |                 | transfer. 80% recovery meaning 3 Ml/d is injected and 2.4 Ml/d is                 |              |                             |                        |
|     |              |                 | subsequently abstracted from the borehole.                                        |              |                             |                        |
| 5   | ESW-DES-001  | Canvey Island   | Seawater desalination plant at Canvey Island with a transfer to Hanningfield      | Desalination | 25, 31.5, 35, 38,           | 2032                   |
|     |              | Desalination    | WTW. The intake / outfall will be via a pier type structure.                      |              | 41.5, 50, 65 100,           |                        |
|     |              | (Terrestrial)   |                                                                                   |              | 190                         |                        |



| 6  | ESW-EFR-001;  | Southend-on-   | Water reuse plant being fed from Anglian Water's WRC with a transfer to   | Water Reuse      | 40.5, 20.5, 20    | 2032 |
|----|---------------|----------------|---------------------------------------------------------------------------|------------------|-------------------|------|
|    | ESW-EFR-001A; | Sea Water      | Hanningfield reservoir - output based upon the maximum output from the    |                  |                   |      |
|    | ESW-EFR-001B  | Reuse          | WRC                                                                       |                  |                   |      |
| 7  | ESW-EFR-003   | Colchester     | Water Reuse plant fed from Anglian Water WRC with transfer to Abberton -  | Water Reuse      | 3.5, 6.5, 10, 15  | 2032 |
|    |               | Water Reuse    | developed at max output                                                   |                  |                   |      |
| 8  | ESW-NIT-005   | Langford       | Electrodialysis Reversal (EDR) or Ion-Exchange (IEX) nitrate treatment at | Nitrate          | 2.75              | 2029 |
|    |               | Nitrate Scheme | Langford WTW so that final water meets nitrate PCV. Discharge options not | Treatment        |                   |      |
|    |               |                | yet known - option contains a discharge stream transfer to Maldon STW     |                  |                   |      |
|    |               |                | (AWS)                                                                     |                  |                   |      |
| 9  | ESW-NIT-006   | Langham        | Electrodialysis Reversal (EDR) or Ion-Exchange (IEX) nitrate treatment at | Nitrate          | 0.9               | 2029 |
|    |               | Nitrate Scheme | Langham WTW so that final water meets nitrate PCV. Discharge options not  | Treatment        |                   |      |
|    |               |                | yet known - option contains a discharge stream transfer to Colchester STW |                  |                   |      |
|    |               |                | (AWS)                                                                     |                  |                   |      |
| 10 | ESW-PMP-001A  | Abberton       | Additional pumping capacity pending the completion of a transfer between  | Pump and         | 8                 | 2030 |
|    |               | RWPS and       | Abberton Reservoir and Langford WTW. Option also includes an upgrade at   | clarifier        |                   |      |
|    |               | Langford       | Langford WTW                                                              | upgrade          |                   |      |
|    |               | Clarifier      |                                                                           |                  |                   |      |
|    |               | upgrade        |                                                                           |                  |                   |      |
| 11 | ESW-TRA-009   | Langham WTW    | On the basis the Strategic Pipeline Alliance (SPA) is constructed (led by | Transfer (inter- | 3.5, 6.5, 9.5, 10 | 2030 |
|    |               | to SPA         | Anglian Water)                                                            | company)         |                   |      |
| 12 | ESW-UVC-001   | Langford UV    | Additional ultraviolet treatment contactors to treat for cryptosporidium  | UV Treatment     | 0.2               | 2029 |

**Enhancement Case (NES14)** 



## TABLE 17: FEASIBLE WATER SUPPLY OPTIONS – SUFFOLK

| No. | Option UID         | Option Name                                         | Option Description                                                                                                                                               | Option Type                  | Deployable<br>Output<br>(MI/d)         | Earliest<br>start<br>date |
|-----|--------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|---------------------------|
|     |                    |                                                     | Blyth WRZ                                                                                                                                                        |                              |                                        |                           |
| 1   | ESW-DES-003-<br>BW | Sizewell Desalination using Beach Well              | Construction of a small scale desalination plant using beachwells in the Sizewell area                                                                           | Desalination<br>(BW)         | 20.1                                   | 2032                      |
| 2   | ESW-DES-003-<br>IG | Sizewell Desalination<br>using Infiltration Gallery | Construction of a small scale desalination plant using infiltration galleries in the Sizewell area                                                               | Desalination (IG)            | 11.2                                   | 2032                      |
| 3   | ESW-TRA-001        | Barsham WTW to<br>Saxmundham Tower                  | This option transfers treated water from Barsham WTW (in Northern Central WRZ) through a new main constructed from Barsham to Saxmundham, via Holton             | Transfer<br>(interzonal)     | 15                                     | 2028                      |
| 4   | ESW-TRA-008        | Sizewell to<br>Saxmundham                           | Transfer from Sizewell to Saxmundham, using Sizewell Desalination as the water source (ESW-DES-003-BW or ESW-DES-003-IG).                                        | Transfer<br>(intrazonal)     | 3.5, 8                                 | 2028                      |
| 5   | ESW-TRA-010        | Transfer from Wherstead (AWS) to Saxmundham         | Transfer from Wherstead to Saxmundham, using AW's SPA main as the water source                                                                                   | Transfer (inter-<br>company) | 3.5, 10                                | 2028                      |
| 6   | ESW-TRA-010A       | Transfer from Wherstead<br>(AWS) to Saxmundham      | Transfer from Wherstead to Saxmundham, using AWS's SPA main as the water source. This option assumes that ESW-TRA-010 is not constructed as functions on its own | Transfer (inter-<br>company) | 8, 18.5,<br>34.5, 44                   | 2028                      |
| 7   | ESW-TRA-010B       | Transfer from Wherstead<br>(AWS) to Saxmundham      | Transfer from Wherstead to Saxmundham, using AWS's SPA main as the water source. This option assumes that ESW-TRA-010 is constructed and supplements it          | Transfer (inter-<br>company) | 4.5, 8.5, 15,<br>24.5, 31, 34,<br>40.5 | 2028                      |
| 8   | ESW-TRA-012        | Transfer from Eye<br>Airfield to Saxmundham         | Transfer from Eye Airfield to Saxmundham. This option assumes that ESW-<br>TRA-016 (supplied from California / Caister desalination options) is<br>constructed.  | Transfer<br>(interzonal)     | 3.5, 8                                 | 2028                      |
| 9   | ESW-TRA-017        | Transfer from<br>Saxmundham to<br>Sizewell          | Transfer from Saxmundham to Sizewell. This option assumes that (ESW-<br>TRA-001) Barsham WTW to Saxmundham Tower is constructed.                                 | Transfer<br>(intrazonal)     | 2.5                                    | 2028                      |

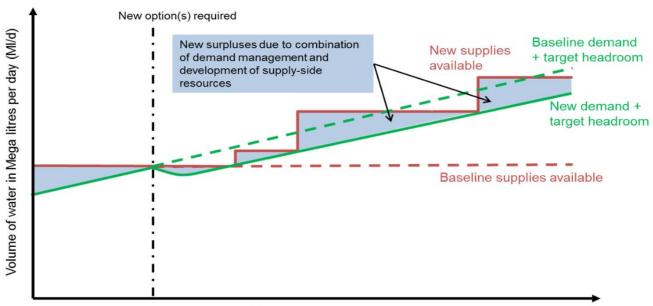
**Enhancement Case (NES14)** 



| Harti | smere WRZ          |                                                                    |                                                                                                                                                             |                              |                               |      |
|-------|--------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|------|
| 10    | ESW-TRA-011        | Transfer from<br>Saxmundham to Eye<br>Airfield                     | Transfer from Saxmundham to Eye Airfield, using Sizewell Desalination as the water source (ESW-DES-003-BW or ESW-DES-003-IG).                               | Transfer<br>(interzonal)     | 6.5, 9.5                      | 2028 |
| 11    | ESW-TRA-015        | Transfer from Barsham to Eye Airfield                              | Transfer from Barsham WTW to Eye Airfield. This option is required in combination with ESW-TRA-001 Barsham WTW to Saxmundham Tower.                         | Transfer<br>(interzonal)     | 6.5, 9.5                      | 2028 |
| 12    | ESW-TRA-016        | Transfer from Norwich<br>(West, AWS) to Eye<br>Airfield            | Transfer from Norwich (AW, west – near Little Melton) to Eye Airfield using AWS Great Yarmouth, Caister or Bacton desalination options as the water source. | Transfer (inter-<br>company) | 6.5, 9.5, 10,<br>18.5, 36, 44 | 2028 |
| 13    | ESW-TRA-019        | Transfer from Holton<br>WTW to Eye Airfield                        | Transfer from Holton to Eye Airfield. This option is required in combination with (ESW-TRA-001) Barsham WTW to Saxmundham Tower.                            | Transfer<br>(interzonal)     | 8.5                           | 2028 |
| Nort  | hern Central WRZ   |                                                                    |                                                                                                                                                             |                              |                               |      |
| 14    | ESW-DES-004-<br>BW | California (Caister)<br>Desalination using<br>Beach Well           | Construction of a small scale desalination plant using beachwells in the Great Yarmouth Area near Caister WRC                                               | Desalination<br>(BW)         | 25.1                          | 2032 |
| 15    | ESW-DES-004-<br>IG | California (Caister)<br>Desalination using<br>Infiltration Gallery | Construction of a small scale desalination plant using infiltration galleries in the Great Yarmouth Area near Caister WRC                                   | Desalination (IG)            | 14.0                          | 2032 |
| 16    | ESW-DES-008-<br>BW | Corton Desalination<br>using Beach Well                            | Construction of a small scale desalination plant using beachwells in the<br>Lowestoft area near Corton WRC                                                  | Desalination<br>(BW)         | 10.1                          | 2032 |
| 17    | ESW-DES-008-<br>IG | Corton Desalination<br>using Infiltration Gallery                  | Construction of a small scale desalination plant using infiltration galleries in the Lowestoft area near Corton WRC                                         | Desalination (IG)            | 5.6                           | 2032 |
| 18    | ESW-EFR-002        | Lowestoft Water Reuse to Lound Lakes                               | Water reuse plant fed from Anglian Water's WRC with a transfer to Lound Lakes                                                                               | Water Reuse                  | 3.5, 6.5, 10,<br>11           | 2030 |
| 19    | ESW-EFR-002A       | Lowestoft Water Reuse<br>to Ellingham Mill                         | Water reuse plant fed from Anglian Water's WRC with a transfer to Ellingham Mill                                                                            | Water Reuse                  | 3.5, 6.5, 10,<br>11           | 2030 |
| 20    | ESW-NIT-004        | Barsham Nitrate<br>Scheme                                          | Electrodialysis Reversal (EDR) or Ion-Exchange (IEX) nitrate treatment at<br>Barsham WTW so that final water meets nitrate PCV. Discharge options not       | Nitrate Treatment            | 2.15                          | 2029 |



|    |                                                     |                                                                          | yet known - option contains a discharge stream transfer to Beccles STW (AWS)                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                   |      |
|----|-----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|------|
| 21 | ESW-RES-<br>002A; ESW-<br>RES-002B;<br>ESW-RES-002C | North Suffolk Winter<br>Storage Reservoir                                | New winter storage reservoir to be filled in winter from River Waveney at ESW's existing Shipmeadow intake and potentially from a new intake on the Hundred River at Kessingland (currently pumped to sea by IDB at Kessingland). IDB indicates annual average of ~30MI/d available. The IDB is about to setback the sea defence and construct a new Hundred River PS which will have a t-off for winter storage. Option includes cost to upgrade Barsham WTW to treat additional resource. | Reservoir                    | 16.2<br>(3500MI<br>reservoir),<br>18.5<br>(5000MI<br>reservoir),<br>19.9<br>(7500MI<br>reservoir) | 2033 |
| 22 | ESW-TRA-007                                         | Norwich (East, AWS) to<br>Barsham WTW Transfer                           | Transfer to intercept AWS Great Yarmouth, Caister or Bacton desalination options with a transfer to Barsham WTW.                                                                                                                                                                                                                                                                                                                                                                            | Transfer (inter-<br>company) | 3.5, 4, 7.5,<br>26.5, 34.5,<br>44                                                                 | 2028 |
| 23 | 03b-0478-B                                          | Caister Water Reuse                                                      | Water reuse plant fed by AWS Caister WRC                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water reuse                  | 16.4                                                                                              | 2030 |
| 24 | ESW-TRA-013                                         | Transfer from<br>Saxmundham to<br>Barsham                                | Transfer from Saxmundham to Barsham WTW, using Sizewell Desalination as the water source (ESW-DES-003-BW or ESW-DES-003-IG).                                                                                                                                                                                                                                                                                                                                                                | Transfer<br>(interzonal)     | 26.5                                                                                              | 2028 |
| 25 | ESW-TRA-014                                         | Transfer from Eye<br>Airfield to Barsham                                 | Transfer from Eye Airfield to Barsham WTW. This option assumes that<br>ESW-TRA-016 supplied from AWS Great Yarmouth, Caister or Bacton<br>desalination options constructed.                                                                                                                                                                                                                                                                                                                 | Transfer<br>(interzonal)     | 26.5                                                                                              | 2028 |
| 26 | ESW-TRA-018                                         | Transfer from Bungay<br>Wells to Broome WTW                              | Transfer from Bungay Wells to Broome WTW (combined option with ESW-<br>TRA-023. Combined DO is 1 Mld).                                                                                                                                                                                                                                                                                                                                                                                      | Transfer<br>(intrazonal)     | 1                                                                                                 | 2028 |
| 27 | ESW-TRA-021                                         | Transfer from Caister-<br>on-Sea EFR to Ormesby                          | Transfer from Caister-on-Sea EFR Plant (AWS) to Ormesby, using 03b-0478-B as the water source.                                                                                                                                                                                                                                                                                                                                                                                              | Transfer (inter-<br>company) | 10                                                                                                | 2028 |
| 28 | ESW-TRA-022                                         | Transfer from AWS<br>Caister-on-Sea<br>Desalination to Caister-<br>Tower | Transfer from Caister-on-Sea Desalination Plant (AWS) to Caister Tower.                                                                                                                                                                                                                                                                                                                                                                                                                     | Transfer (inter-<br>company) | 14, 25.1                                                                                          | 2028 |




| 20 | ESW-TRA-023 | Broome to Barsham | Transfer from Broome WTW to Barsham WTW (combined option with ESW- | Transfer     | 1 | 2028 |
|----|-------------|-------------------|--------------------------------------------------------------------|--------------|---|------|
| 29 | ESW-TRA-023 | Transfer          | TRA-018. Combined DO is 1 Mld).                                    | (intrazonal) | I | 2020 |

### 3.1.4 Phase 4a: Economic Modelling of Options - EBSD Modelling

The options and costs identified within the detailed Phase 3 feasibility studies were developed for inclusion within Economics of Balancing Supply and Demand (EBSD) modelling and further decision making as part of our Best Value Planning process (section 3.2). We have used EBSD to develop a least cost plan for WRMP24. The EBSD framework has been used by UK Water Companies since 2002 to identify which demand-side and supply-side options are needed to maintain levels of service over a 25-year planning period. The framework applies optimisation techniques to ensure that the group of options selected is the least -cost plan available that can meet forecast future deficits. The EBSD model considers the supply-demand balance for each WRZ at annual timesteps and selects options to address deficits based on a cost per MI/d and the earliest available date of supply for relevant options. The EBSD approach to investment modelling is illustrated in Figure FIGURE 12.

### FIGURE 12: THE EBSD APPROACH TO INVESTMENT MODELLING



Time

The WRPG states that we must forecast our supply and demand over at least the statutory minimum period of 25 years and, where a deficit is identified, consider options to resolve that deficit. Our central least cost plan (based upon central forecasts for growth, climate change, and leakage) has been determined over the 25-year planning horizon to 2050. However, to test the sensitivity of our plan to the planning period, we have also conducted EBSD model runs to 2075 and 2100.

The least cost plan produced by the EBSD model for the 2050 time-horizon is shown in Table 18.

| WATER (iving water WATER (iving water |
|---------------------------------------|
|---------------------------------------|

**Enhancement Case (NES14)** 



### TABLE 18: LEAST COST PLAN TO 2050 - SELECTED OPTIONS

| Year<br>Selected | WRZ                 | Option                                                                       | Option Ref                     | Option type                                             | AMP   |
|------------------|---------------------|------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------|-------|
| 2027/2028        |                     | Linford New WTW 10 MI/d                                                      | ESW_ABS_003                    | New WTW and<br>borehole(s) (with raw<br>water transfer) | AMP8  |
| 2029/2030        | _                   | Langford Nitrate scheme                                                      | ESW-NIT-005                    | Nitrate removal                                         | AMP8  |
| 2029/2030        | Essex               | Langford UV                                                                  | ESW-UVC-001                    | Cryptosporidium<br>removal                              | AMP8  |
| 2029/2030        |                     | Langham Nitrate scheme                                                       | ESW-NIT-006                    | Nitrate removal                                         | AMP8  |
| 2030/2031        | _                   | Abberton RWPS and Langford Clarifier upgrade                                 | ESW-PMP-001A                   | Raw water pumping station and clarifier upgrade         | AMP8  |
| 2028/2029        | Blyth               | Barsham WTW<br>Saxmundham Tower                                              | ESW_TRA_001                    | Potable Water Transfer                                  | AMP8  |
| 2028/2029        | Hartismere          | Holton WTW Eye Airfield                                                      | ESW_TRA_019                    | Potable Water Transfer                                  | AMP8  |
| 2029/2030        |                     | Barsham Nitrate scheme                                                       | ESW-NIT-004                    | Nitrate removal                                         | AMP8  |
| 2030/2031        | Northern<br>Central | Bungay wells to Broome WTW<br>transfer and Broome to Barsham<br>WTW transfer | ESW_TRA_018 and<br>ESW-TRA-023 | Raw water transfers                                     | AMP8  |
| 2032/2033        |                     | Lowestoft Water Reuse                                                        | ESW_EFR_002A                   | Water Reuse                                             | AMP9  |
| 2040/2041        |                     | North Suffolk Winter<br>Storage 7500 MI and Transfer                         | ESW_RES_002C                   | New Reservoir (with raw water transfer)                 | AMP11 |

Since publishing out draft WRMP24, we have progressed operational interventions (options) to reduce unplanned outage which increases Water Available for Use (WAFU). These options were not sufficiently developed for our draft WRMP24 and at that point in time, were not considered feasible. However, the options, including nitrate reduction schemes for Barsham, Langham and Langford WTWs and a UV scheme for cryptosporidium management at Langford WTWs, are now all considered feasible and following least cost modelling and Best Value assessments, are now included in our revised draft WRMP24 preferred final plan.

Since consulting on our draft WRMP24, the Environment Agency has asked us to consider if the proposed Lowestoft Reuse option and the North Suffolk reservoir option could be used as a conjunctive use system to increase resilience or the deployable output.

While both schemes are selected in both the core plan and the Habitats Regulation Adaptive Programme, they are not selected at the same time with Lowestoft Reuse being selected in 2032/33 and North Suffolk Reservoir being selected in 2040/41 (driven by Environmental Destination). Both schemes have an individual WAFU gain although at this stage, we do not consider that there would be a conjunctive use WAFU gain. Once both schemes are in supply, Lowestoft Reuse could

NORTHUMBRIAN WATER(iving water

ESSEX&SUFFOLK WATER living water

28 September 2023 PAGE 50 OF 91 discharge into the reservoir as this will dilute nitrate concentrations which are likely to be elevated given the reservoir will be filled with high flow river water predominantly in the autumn and winter.

The EBSD tool does not consider other monetised criteria such as carbon or other societal and environmental impacts and benefits. As such the model results represent a least-cost plan with no further optimisation. Best Value Planning as described in section 3.2 below aims to determine whether the inclusion of further monetarised and non-monetarised criteria would identify a plan that deliver the best value as defined by WRPG.

### 3.1.5 Phase 4b: Strategic Environmental Assessment (SEA) of Options

Our detailed options level assessment approach was aligned with WRE's Integrated Environmental Assessment (IEA) process. This process has been developed through consultation with multiple stakeholders. This is aligned with regulator expectations around regional and water company planning.

Each option was assessed against the Strategic Environmental Assessment (SEA) objectives using defined effect assessment and evaluation criteria based on relevant spatial datasets and professional judgement. The assessment indicated whether the proposed option would help meet or prevent achievement of the SEA objectives. If it contributed to the SEA objectives, then it was considered a positive effect. If the option prevents the SEA objective being met, then it was considered a negative effect. The assessment focused on high-level issues as identified through the objectives, sub-objectives, and key receptors and assets. Note that it was not undertaken to the level of detail that an Environmental Impact Assessment (EIA) would be.

### 3.2. BEST VALUE PLANNING AND OUR BEST VALUE PLAN

## **3.2.1 Best Value Planning Introduction**

The aim of the WRMP is to present a long-term plan to ensure a secure supply of wholesome drinking water for customers and to protect and enhance the environment. To ensure the WRMP achieves these aims we carry out Best Value Planning.

This aims to determine whether the inclusion of further monetised and non-monetised criteria would identify a plan that delivers the best value, defined by the Water Resources Planning Guideline (WRPG) as 'one that considers factors alongside economic cost and seeks to achieve an outcome that increases the overall benefit to customers, the wider environment and overall society'.

Best Value Planning occurs after the following steps within the WRMP process:

- development of a baseline supply demand forecast for the plan identifying that water resources zones are in deficit over the planning period; and
- options appraisal and development of feasible supply and demand options to address the deficit.

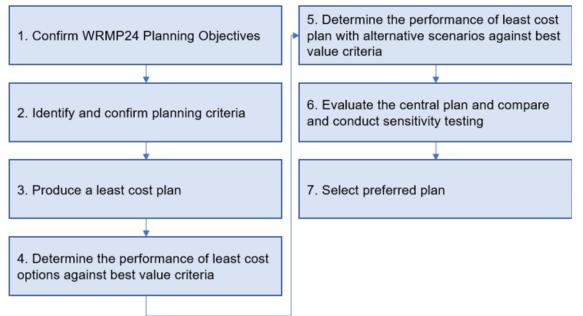
We have undertaken an appraisal of alternative programmes to compare against and justify our preferred Best Value Plan. We have undertaken scenario testing against Ofwat's common reference scenarios to understand any tipping points which might affect our decision-making and programme content.

# **3.2.2 Problem Characterisation**

We used a problem characterisation assessment tool to assess our vulnerability to various strategic issues, risks, and uncertainties and to determine the economic and best value modelling approaches used. This assessment has shown that there is a relatively large deficit problem to solve. However, the issues associated with this are of low complexity and well understood. These include:

- impact of climate change;
- sustainability reductions;
- environmental destination; and
- impact of Covid-19 on household and non-household demand forecasts.

This confirmed that 'Current' approaches (Economics of Balancing Supply and Demand, EBSD) should be adequate, and specific complexities can be examined through the steps recommended in the parallel UKWIR Risk Based Planning Methods project (to assist in the derivation of DO, incorporation of uncertainty etc.)


## 3.2.3 Best Value Plan Methodology Overview

Following the outcomes of the Problem Characterisation exercise, the Best Value Plan Methodology has been designed to allow for individual assessment of options and portfolios of options against the planning criteria.

Figure FIGURE 13 illustrates the steps undertaken to develop and determine the Best Value Plan. This has been developed to align with the Water Resources Planning Guideline 2021, which sets out the expectations of the regulators. In addition, reference has been made to UKWIR's 2020 guidance 'Deriving a best value water resources management plan'.

**Enhancement Case (NES14)** 

### FIGURE 13: OVERVIEW OF BEST VALUE PLANNING APPROACH



The steps are briefly described below, and for further detail on the BVP please consult section 8 of the ESW Revised WRMP24 Best Value Plan Technical Report.

### Step 1: Confirm WRMP24 Planning Objectives

Our objectives have been chosen because they align with:

- our own Purpose, Vision, and Values;
- our current Performance Commitment Levels (PCLs) and Outcome delivery Incentives (ODIs);
- water Resources East's (WRE) regional plan objectives;
- government expectations for water companies WRMP24s including outcomes of the 25 Year Environment Plan and our local River Basin Management Plans (RBMPs); and
- the overall requirements of the Water Resources Planning Guideline.

The objectives we aim to achieve in our WRMP24 Best Value Plan (BVP) are:

- achieve a secure, resilient, and sustainable supply of water for our customers, moving to a 1 in 500 level of resilience by 2050;
- protect and enhance the environment, ensuring our abstractions are sustainable both in the short and long term;
- reduce leakage from our network and from customer's homes, contributing to a national target of 50% reduction from 2017/18 levels by 2050;
- reduce customer demand to 110 l/head/day by 2050;
- reduce non-household customer demand by 9% by 2037/38 (excluding growth); and
- for all our meters to be smart meters by 2050.



### Step 2: Identify and confirm planning criteria

For each plan developed, and options selected, the best value plan criteria listed below have been used to assess whether plans and options deliver best value. The selection of the criteria has been informed by our objectives.

- cost of plan (TOTEX NPV);
- drought resilience;
- biodiversity net gain;
- natural Capital;
- leakage reduction;
- per capita consumption;
- flood risk management;
- multi-abstractor benefit;
- carbon;
- customer preference;
- human and social well-being;
- option deliverability; and
- impact upon designated sites.

### Step 3: Produce a least cost plan

Develop a Least Cost Plan using the EBSD model, this Least Cost Plan served as a baseline against which to appraise other programmes. The Least Cost Plan assumed the following:

- central forecasts for supply and demand;
- leakage reduction of 40% by 2050 in the Essex and Suffolk areas;
- central forecast for climate change impacts;
- environmental Destination (ED) licence reductions are based on the BAU+ scenario. Included in this are the BAU+ abstraction licence reductions provided by WRE using its simulator for both groundwaters and surface-waters in the Suffolk WRZs; and for groundwater in the Essex WRZ, with the surface water impacts based on new Hand off Flows (HOFs) on the River Stour, River Blackwater, and the Roman River; and
- central universal metering option.

# Step 4: Determine the performance of least cost options against best value criteria

This step assessed the options chosen in the Least Cost Plan against all potential available options for each WRZ using the Best Value Plan criteria. The purpose of this step was to identify if there exist any better performing options (against best value plan criteria) that haven't been chosen in the Least Cost Plan and therefore should be included in a Best Value Plan. Option availability was determined based on earliest delivery date and consideration of any mutual inclusivity/exclusivity with other options. To aid this analysis, parallel option plots were developed to allow a visual assessment of option performance across the full spectrum of Best Value Plan criteria.

Step 5: Determine the performance of least cost plan with alternative scenarios against best value criteria

The objective of this step was to assess alternative plans and the extent to which they meet the objectives as measured using the value criteria. The scenarios considered are summarised in Table 19.

### TABLE 19: ALTERNATIVE PLAN AND ADAPTIVE PROGRAMMES

| Scenario                                                | Description                                                                                                                                                                                                                                                                                                                                                                                    | Adaptive programme/ |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| reference                                               | Description                                                                                                                                                                                                                                                                                                                                                                                    | Alternative plan    |  |
| Central Plan                                            | Central estimates for demand and supply factors.                                                                                                                                                                                                                                                                                                                                               |                     |  |
| High<br>Environmental<br>Destination                    | An Adaptive Programme which assumes our AMP8 WINEP Environmental<br>Destination investigations conclude that a higher-level of abstraction<br>sustainability reductions are required (i.e., Enhanced scenario) than our central<br>forecast.                                                                                                                                                   | Adaptive Programme  |  |
| High PCC                                                | There is uncertainty as to whether PCC will reduce as forecast. This Adaptive<br>Programme assumes PCC outturns in line with our High PCC forecast.                                                                                                                                                                                                                                            | Adaptive Programme  |  |
| Best Environment<br>& Society                           | Incorporates the lowest level of abstraction from existing sources (Enhanced ED scenario) and the highest level of leakage reduction (50%).                                                                                                                                                                                                                                                    | Alternative Plan    |  |
| North Suffolk<br>Reservoir                              | The Adaptive Programme we would deliver should AMP7 detailed design conclude that the North Suffolk winter storage reservoir can be delivered more quickly than is currently assumed.                                                                                                                                                                                                          | Adaptive Programme  |  |
| Habitats<br>regulations<br>sustainability<br>reductions | There is uncertainty around the application of EA advised sustainability reductions and/or stricter HOF conditions by 2026/7 for up to nine sources in our Northern Central WRZ, to meet the requirements of the Conservation of Habitats and Species Regulations 2017 (the Habitats Regulations). Once these have been confirmed, we will review the need to move to this Adaptive Programme. | Adaptive Programme  |  |

### Step 6: Evaluate the central plan and compare and conduct sensitivity testing

Parallel axis plots were used to visually assess the plan level performance of the Central plan against the alternative plan, sensitivity scenarios, and adaptive programmes to review whether the alternatives perform better than the least cost Central Plan against the best value criteria. Table 20 defines the sensitivity scenarios included.

For purposes of assessing Best Value, ESW are using the statutory 2050 timeline for WRMP24. However, sensitivity testing was undertaken by assessing our plan over the 2075 and 2100 timelines to ascertain whether planning for a longer period impacts the selection of options. In addition, further scenarios were assessed, including the Ofwat Common Reference required scenario testing.



### TABLE 20: SENSITIVITY SCENARIOS

| Least cost<br>planning<br>scenario<br>scenario |                                      | Description                                                                                                                  | Sensitivity scenario/<br>Adaptive programme/<br>Alternative plan |
|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Central Plan                                   | Central Plan                         | Central estimates for demand and supply factors                                                                              |                                                                  |
| Ofwat Climate                                  | Low climate change (impacts)         | Lower climate change impact forecasts for supply and demand.                                                                 | Sensitivity scenario                                             |
| Change                                         | High climate<br>change (impacts)     | Higher climate change impact forecasts for supply and demand.                                                                | Sensitivity scenario                                             |
| Ofwat                                          | Tech slow                            | Assume slow adoption of water efficiency technology and a higher demand forecast                                             | Sensitivity scenario                                             |
| Fechnology                                     | Tech fast                            | Assume fast adoption of water efficiency technology and a higher demand forecast                                             | Sensitivity scenario                                             |
| Ofwat                                          | Low demand                           | Assumes implementation of higher demand management options to reduce demand                                                  | Sensitivity scenario                                             |
| Demand                                         | High demand                          | Assumes implementation of lower demand management options resulting in higher demand                                         | Sensitivity scenario                                             |
| Ofwat                                          | Low<br>Environmental<br>Destination  | Assumes reductions in abstraction licences as a result of a business-as-usual (BAU) Environmental Destination scenario.      | Sensitivity scenario                                             |
| Abstraction                                    | High<br>Environmental<br>Destination | Assumes reductions in abstraction licences as a result of an<br>nvironmental<br>Enhanced Environmental Destination scenario. |                                                                  |
| Per Capita<br>Consumption                      | Low PCC                              | Assumes that demand is reduced below that of the central plan<br>through enhanced water efficiency measures                  | Sensitivity scenario                                             |

\*Also, an Adaptive Programme.

### Step 7: Select preferred plan

This was a qualitative step that undertook decision-making and assurance of alternative plans to select a preferred plan that represents the Best Value Plan, it included the development of a narrative to explain the rationale for the selection of the preferred plan over alternatives.

### 3.2.4 Best Value Plan Assessment Results

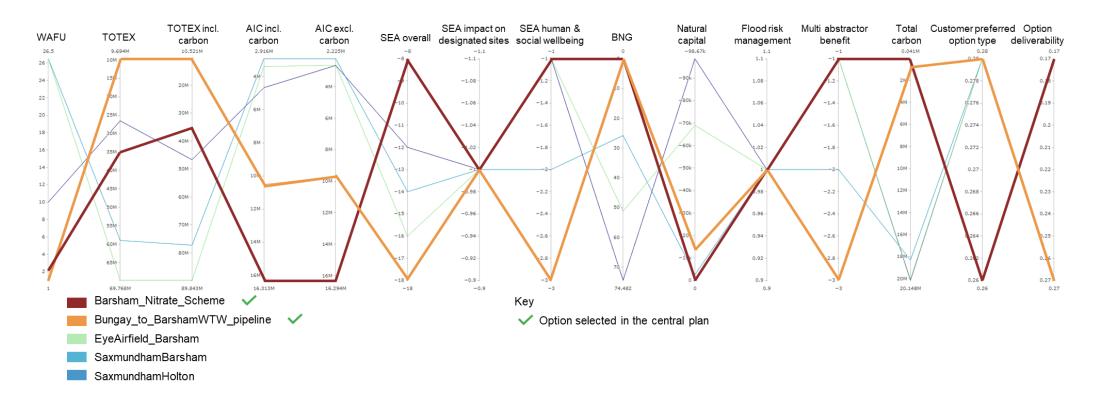
Our Best Value Plan includes both demand management and new supply options. This section focuses on supply options only (NES15 sets out our <u>WRMP Demand Management</u> options).

### **Option comparison results**

As described in section 3.1.8, parallel axis plots were created at a WRZ level to enable comparison of performance of individual water supply options against best value plan criteria.

| NORTHUMBRIAN       | ESSEX&SUFFOLK      |
|--------------------|--------------------|
| WATER living water | WATER living water |
|                    |                    |

Taking account of option availability (e.g., earliest delivery date and mutual exclusivity) no alternative options were identified as outperforming those selected under the least cost plan.

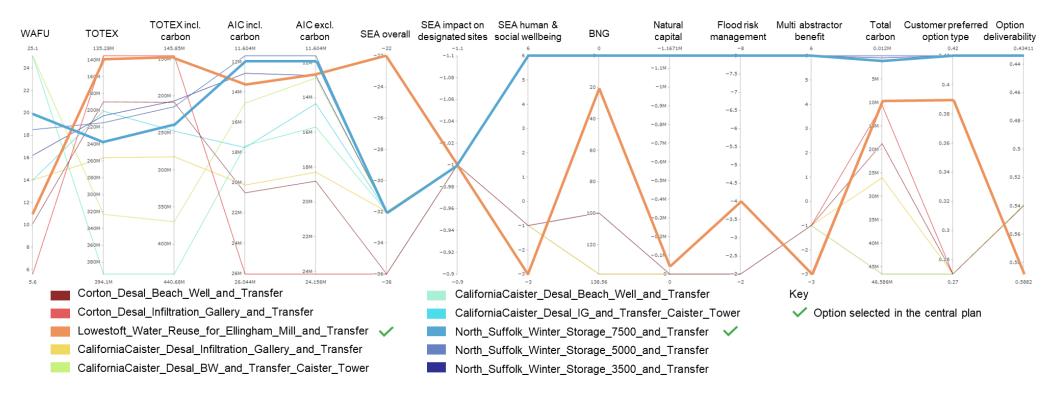

To illustrate the approach, we have included here plots for the Northern Central WRZ. Figure FIGURE 14 shows that the Barsham Nitrate Scheme is the only water supply option available for selection in AMP8 and it is selected in the Least Cost Plan. The remaining options are transfers, the selection of which are dependent upon the relative respective water availability and water need between donor and recipient WRZ.

For AMP9 and beyond Figure 15 includes the parallel axis plots for the Northern Central WRZ. It can be seen that the reservoir performs best due to the lowest AIC scores and best overall non monetised BVP criteria performance. Of the remaining options, Lowestoft Reuse performs best against AIC, SEA overall, Biodiversity net gain (BNG), Natural Capital (NC), Carbon, and customer preference criteria, supporting its inclusion in the Central Plan from a best value perspective. The remaining Corton and Caister desalination options only outperform Lowestoft Reuse for option deliverability, which is not considered sufficient to warrant inclusion from a BVP perspective.

For more details see section 6.1 of our ESW Revised WRMP24 Best Value Plan Technical Report.



### FIGURE 14: PARALLEL AXIS PLOT SHOWING OPTIONS AVAILABLE IN AMP8 IN NORTHERN CENTRAL WRZ




28 September 2023 PAGE 58 OF 91

**Enhancement Case (NES14)** 



### FIGURE 15: PARALLEL AXIS PLOT SHOWING OPTIONS AVAILABLE IN AMP9 IN NORTHERN CENTRAL WRZ



28 September 2023 PAGE 59 OF 91

### Plan comparison results

A summary of the sensitivity scenarios, Adaptive Programmes, and Alternative Plan is provided in Table 21 including a summary of the options selected in the plans and their performance against best value criteria.

# **TABLE 21: SUMMARY OF BEST VALUE PLAN RESULTS**

| Best value planScenario description<br>scenario |                                                                                                        | Comparison with central plan                                                                                                                                                                                                                                                                                                         | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Central Plan                                    | Central estimates for<br>demand and supply<br>factors. Medium DMO<br>implementation.                   | n/a                                                                                                                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Low climate                                     | As per the Central Plan,                                                                               | The scenario is as per the Central Plan                                                                                                                                                                                                                                                                                              | While the low climate change scenario provides                                                                                                                                                                                                                                                                                                                                                                                                                             |
| change<br>(impacts)                             | but using the low climate<br>change scenario on<br>supply forecasts                                    | in AMP8 and AMP9 except that the<br>Langford UV and Langham Nitrate<br>schemes are not selected. There are<br>further differences in option selection<br>beyond 2040 but for these options, lead<br>times are sufficient for option selection to<br>be refined at later plans based upon<br>additional information on climate change | a Totex saving of approximately 10% compared<br>to the Central Plan the low climate change<br>scenario is not considered best value due to the<br>impact on supply resilience                                                                                                                                                                                                                                                                                              |
| Lich alimata                                    | As par the Control Plan                                                                                | impacts.                                                                                                                                                                                                                                                                                                                             | The high climate change cooperie requires                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| High climate                                    | As per the Central Plan,                                                                               | The scenario is as per the Central Plan                                                                                                                                                                                                                                                                                              | The high climate change scenario requires                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| change                                          | <b>c c</b>                                                                                             | in AMP8 and AMP9 except that                                                                                                                                                                                                                                                                                                         | approximately 11% additional Totex compared t                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (impacts)                                       | change scenario on                                                                                     | Southend Reuse is selected in AMP9 (or                                                                                                                                                                                                                                                                                               | the Central Plan and environmental metrics                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 | supply forecasts                                                                                       | Corton Beach Well desalination if the                                                                                                                                                                                                                                                                                                | generally perform worse. The high climate                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                                                                                                        | 2100 planning horizon is used). There<br>are further differences in option selection<br>beyond 2040 but for these options, lead<br>times are sufficient for option selection to<br>be refined at later plans based upon<br>additional information on climate change<br>impacts.                                                      | change scenario is not preferred due to adverse cost and environmental impacts.                                                                                                                                                                                                                                                                                                                                                                                            |
| Tech slow                                       | As per the Central Plan<br>except for lower leakage<br>reduction and less water<br>efficiency benefit. | The scenario is as per the Central Plan<br>in AMP8, but in AMP9 Lowestoft Reuse<br>is required earlier in the AMP and<br>Southend Reuse is also required.<br>Beyond 2040 the greater deficit drives<br>additional reuse and desal selection<br>instead of the North Suffolk Reservoir.                                               | The tech slow scenario requires approximately<br>12% less Totex than the Central Plan as higher<br>expenditure on supply options is more than<br>offset by lower demand management<br>expenditure. However, the Tech slow scenario<br>performs significantly worse against SEA metric<br>and does not align with policy expectations for<br>leakage reduction. It is not preferred due to<br>these adverse features which are considered to<br>outweigh the Totex benefit. |

| PR24 |
|------|
|------|

| Best value pla scenario           | InScenario description                                                                                                                                                     | Comparison with central plan                                                                                                                                                                                                                                                                                                                                                         | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tech fast                         | As per the Central Plan<br>except for greater<br>leakage reduction, more<br>water efficiency benefit,<br>and Office for National<br>Statistics (ONS)<br>population growth. | The scenario includes a reduced<br>programme of supply options compared<br>with the Central Plan combined with<br>further leakage reduction and water<br>efficiency measures. Notwithstanding<br>this the Linford WTW scheme is retained<br>in AMP8, together with the Suffolk<br>transfers.                                                                                         | The Tech fast scenario requires approximately<br>20% higher Totex than the Central Plan due to<br>the significantly increased demand management<br>expenditure. The Tech fast scenario performs<br>somewhat better than central plan on the SEA<br>metrics, but worse on carbon and deliverability.<br>The scenario is not preferred as the SEA<br>benefits are not considered to outweigh the<br>additional cost, carbon, and deliverability risks.                                          |
| Low demand                        | As per the Central Plan<br>except for greater<br>leakage reduction, more<br>water efficiency benefit<br>and ONS population<br>growth.                                      | The scenario includes a reduced<br>programme of supply options compared<br>with the Central Plan combined with<br>further leakage reduction and water<br>efficiency measures.                                                                                                                                                                                                        | The low demand scenario requires<br>approximately 12% higher Totex than the<br>Central Plan due to the significantly increased<br>demand management expenditure. The low<br>demand scenario performs somewhat better<br>than the central plan on the SEA metrics, but<br>worse on carbon and deliverability. The plan is<br>not preferred as the SEA benefits are not<br>considered to outweigh the additional cost,<br>carbon, and deliverability risks.                                     |
| High demand                       | As per the Central Plan<br>but with lower leakage<br>reduction, lower water<br>efficiency and greater<br>population growth.                                                | The plan is as per the Central Plan in<br>AMP8, but in AMP9 Southend Reuse is<br>also required. Beyond 2040 the greater<br>deficit drives additional reuse and<br>desalination selection instead of the<br>North Suffolk Reservoir, but lead times<br>for these options, are sufficient for option<br>selection to be refined at later plans<br>based upon updated demand forecasts. | The high demand scenario requires<br>approximately 14% less Totex than the Central<br>Plan as higher expenditure on supply options is<br>more than offset by lower demand management<br>expenditure. However, the high demand<br>scenario performs significantly worse against<br>SEA and carbon metrics and does not align with<br>policy expectations for leakage reduction. It is<br>not preferred due to these adverse features<br>which are considered to outweigh the Totex<br>benefit. |
| Low<br>Environment<br>Destination | As per the Central Plan<br>but using the BAU<br>Environmental<br>Destination scenario                                                                                      | The scenario is as per the Central Plan<br>in AMP8 and AMP9. Beyond 2040<br>Caister Reuse is selected instead of the<br>North Suffolk Reservoir, but lead times<br>are sufficient for option selection to be<br>refined at later plans based upon<br>additional information on required<br>abstraction reductions.                                                                   | The low environment destination scenario<br>requires approximately 9% less Totex than the<br>Central Plan and performs similarly to the central<br>plan on SEA, carbon, and deliverability metrics.<br>Depending upon decisions regarding the<br>Environment Destination a change to the Low<br>ED scenario may be required, but the results<br>indicate that this would not impact option<br>selection in AMP8 and 9.                                                                        |

| nScenario description   | Comparison with central plan            | Conclusion                                   |
|-------------------------|-----------------------------------------|----------------------------------------------|
| As per the Central Plan | The scenario is as per the Central Plan | The Totex cost of the high environment       |
| but using the Enhanced  | in AMP8 and AMP9. Beyond 2040 the       | destination scenario is over double that o   |
| Environmental           | greater deficit drives additional reuse | Central Plan and the scenario performs w     |
| Destination scenario    | and desal selection including the large | than the Central Plan across environmen      |
|                         | Canvey Island Desalination option for   | carbon metrics due to the scale of supply    |
|                         | Essex. However, lead times are          | infrastructure required. It is not therefore |
|                         | sufficient for option selection to be   | preferred compared with the Central Plan     |
|                         | refined at later plans based upon       |                                              |

Best value planScenario descr

scenario High

| i ligit       |                            | The ocentarie to de per the contrar rian  | The Polox cool of the high children               |
|---------------|----------------------------|-------------------------------------------|---------------------------------------------------|
| Environmental | but using the Enhanced     | in AMP8 and AMP9. Beyond 2040 the         | destination scenario is over double that of the   |
| Destination   | Environmental              | greater deficit drives additional reuse   | Central Plan and the scenario performs worse      |
|               | Destination scenario       | and desal selection including the large   | than the Central Plan across environmental and    |
|               |                            | Canvey Island Desalination option for     | carbon metrics due to the scale of supply option  |
|               |                            | Essex. However, lead times are            | infrastructure required. It is not therefore      |
|               |                            | sufficient for option selection to be     | preferred compared with the Central Plan.         |
|               |                            | refined at later plans based upon         |                                                   |
|               |                            | additional information on required        |                                                   |
|               |                            | abstraction reductions.                   |                                                   |
| Low PCC       | As per the Central Plan    | The plan is as per the Central Plan in    | Over the 25 year planning horizon the Totex cost  |
|               | but including high         | AMP8 and AMP9, apart from the             | for the PCC low scenario is slightly higher than  |
|               | enhanced household         | selection in AMP9 of the California       | for the Central Plan, and the SEA, carbon and     |
|               | water efficiency           | Caister desalination option instead of    | deliverability metrics all perform worse than for |
|               | measures                   | Lowestoft Reuse. Beyond 2040 Caister      | the central plan. These conclusions don't hold    |
|               |                            | reuse is selected instead of the North    | for longer planning horizons, with changes in the |
|               |                            | Suffolk Reservoir.                        | option selection post 2040 requiring further      |
|               |                            |                                           | review.                                           |
| High PCC      | As per the Central Plan    | The scenario is as per the Central Plan   | The Totex cost for the PCC high scenario is 16%   |
| C             | but including low          | in AMP8, but in AMP9 Southend reuse is    | -                                                 |
|               | household and non-         | required in addition to Lowestoft Reuse.  | carbon and deliverability metrics all perform     |
|               | household water            | Beyond 2040 the greater deficit drives    | worse than for the Central Plan. It is not        |
|               | efficiency measures        | additional reuse and desal selection      | therefore preferred compared with the Central     |
|               | ,,                         | instead of the North Suffolk Reservoir,   | Plan.                                             |
|               |                            | but lead times are sufficient for option  |                                                   |
|               |                            | selection to be refined at later plans    |                                                   |
|               |                            | based upon additional information on      |                                                   |
|               |                            | climate change impacts.                   |                                                   |
| Best          | This alternative plan      | The plan differs from the Central Plan in | The Totex cost of the Best Environment &          |
|               | assumes 50% leakage        | not selecting Langford UV and Nitrate     |                                                   |
| Society       | reduction and higher       | schemes, and the Abberton RWPS and        | Plan and the plan performs worse than the         |
| 000.019       | water efficiency           | Langford clarifier upgrade in AMP8. The   | Central Plan across environmental and carbon      |
|               | measures resulting in a    | higher leakage reduction DMO is           | metrics due to the scale of the demand            |
|               | smaller deficit in the     | resulting in a smaller deficit to address | management and supply option infrastructure       |
|               | medium term, but it also   | via supply options in AMP8. The plan      | required. It is not therefore preferred compared  |
|               | includes the Enhanced      | includes Southend Water Reuse at          | with the Central Plan.                            |
|               | Environmental              | 40MI/d, Lowestoft Reuse, Corton           |                                                   |
|               | Destination scenario       | Beachwell desalination and Caister        |                                                   |
|               | increasing deficits in the |                                           |                                                   |
|               | -                          | Water reuse to address deficits arising   |                                                   |
|               | longer term.               | from the Enhanced Environmental           |                                                   |
|               |                            | Destination scenario.                     |                                                   |



Enhancement Case (NES14)

|--|

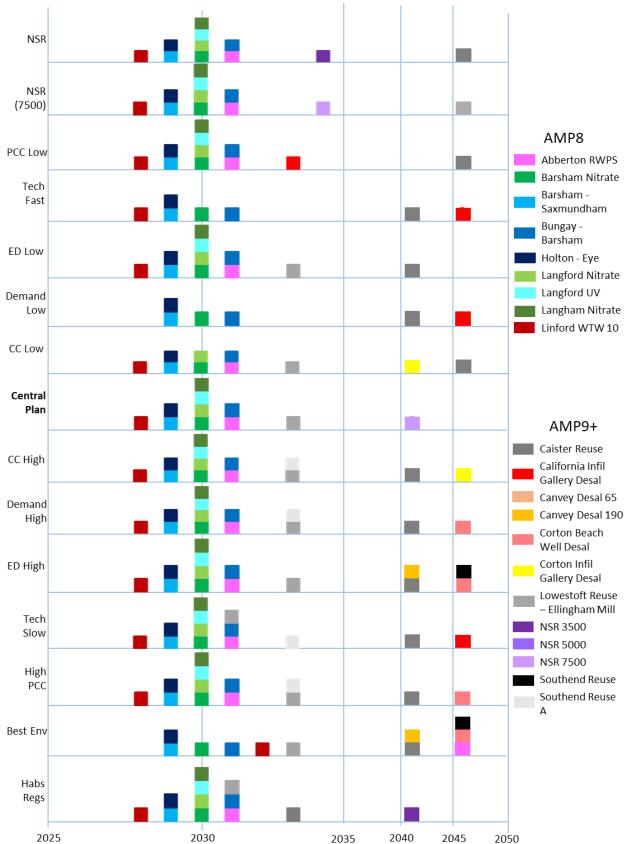
| Best value planScenario description scenario |                             | Comparison with central plan                            | Conclusion                                        |  |  |
|----------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------|--|--|
|                                              |                             |                                                         |                                                   |  |  |
| North Suffolk                                | As per the central plan,    | This Adaptive Programme is the same                     | The Totex cost of the plans that advance          |  |  |
| Reservoir                                    | but this Adaptive           | as the central plan in AMP8, but in AMP9                | selection of North Suffolk Reservoir are          |  |  |
|                                              | Programme selects the       | Lowestoft Reuse is replaced with the                    | between 4% and 15% lower (depending upon          |  |  |
|                                              | North Suffolk Reservoir     | North Suffolk Reservoir. The 3.5Mm <sup>3</sup>         | the planning horizon) than for the Central Plan   |  |  |
|                                              | as soon as it is available. | reservoir size is selected in AMP9 then                 | and perform similarly on most environmental       |  |  |
|                                              |                             | Caister reuse is required from 2045. If                 | metrics (although better on biodiversity) and     |  |  |
|                                              |                             | the reservoir size is fixed at $7.5 Mm^{3} then$        | better than the Central Plan on deliverability.   |  |  |
|                                              |                             | once it is selected in AMP9, Lowestoft                  | However, the North Suffolk Reservoir Adaptive     |  |  |
|                                              |                             | Reuse is selected in 2045.                              | Programme requires a one year extension to the    |  |  |
|                                              |                             |                                                         | moratorium on new non-domestic supplies in        |  |  |
|                                              |                             |                                                         | Hartismere and is dependent on the outcomes of    |  |  |
|                                              |                             |                                                         | the detailed engineering design stage of the both |  |  |
|                                              |                             |                                                         | the North Suffolk Reservoir and Lowestoft         |  |  |
|                                              |                             |                                                         | Reuse.                                            |  |  |
| Habitats                                     | As per the Central Plan,    | The Adaptive Programme is the same as                   | Over the 25 year planning horizon the Totex cost  |  |  |
| Regulations                                  | but this Adaptive           | the Central Plan in AMP8, but in AMP9                   | for the habitat regulation scenario is slightly   |  |  |
| sustainability                               | Programme includes          | Lowestoft Reuse is required earlier in the              | higher (10%) than for the Central Plan.           |  |  |
| reductions                                   | further licence reductions  | AMP and Caister Reuse is also required.                 | Extending the planning horizon to 2075 and        |  |  |
|                                              | based upon the pending      | Beyond 2040 the North Suffolk Reservoir                 | 2100 results in a marginally lower Totex than the |  |  |
|                                              | review of abstractions      | is selected at the smaller size of 3.5Mm <sup>3</sup> . | Central Plan (circa 2.5%) with changes in the     |  |  |
|                                              | under the Habitats          |                                                         | option selection post 2040 requiring further      |  |  |
|                                              | Regulations.                |                                                         | review                                            |  |  |

Figure FIGURE 16 provides an illustrative view of the difference between option selection and/or timing between the various alternative plans discussed in Table 23.

The best value planning assessment supports the selection of the Central Plan from a best value and a monetised (Totex and AIC) perspective. Comparison both at a plan and option level has not identified any alternative plans or options that significantly outperform the Central Plan on a Best Value perspective. Key findings are as follows:

All available AMP8 options are selected under all scenarios and time frames. To address immediate planning deficits, the model is limited to a small portfolio of options for inclusion based upon earliest start date. New water resources are generated by the selection of Linford new groundwater abstraction and WTW. The model also selects three transfers to utilise surplus at the start of the planning period.

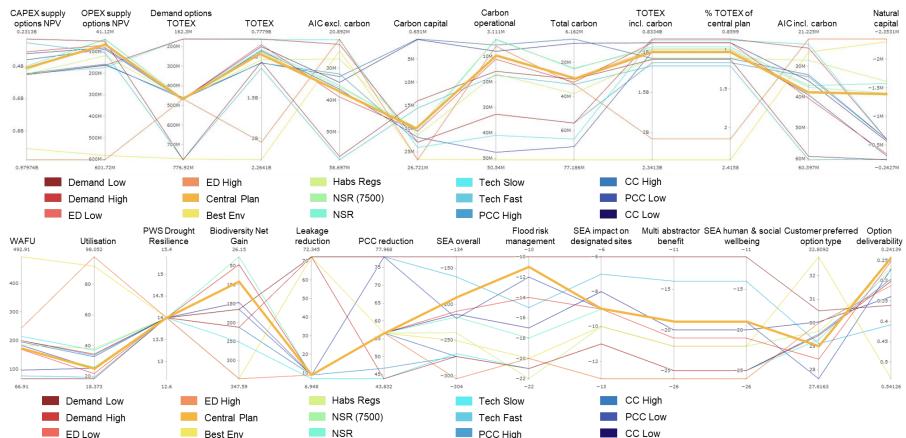
In AMP9, the North Suffolk Winter Storage Reservoir represents the best value option available within this timeframe that can provide new WAFU to alleviate growth constraints and emerging deficits. The Least Cost Plan selects Lowestoft Reuse before the North Suffolk Reservoir, and this is primarily driven by the deficits in the plan and that Lowestoft Reuse can be made available before the reservoir.




The two scenarios where the EBSD model is forced to select the North Suffolk Winter Storage Reservoir in 2034 result in plans with a cheaper Totex than the Central Plan. In our revised WRMP24 assessment, to achieve SDB in the North Suffolk Reservoir Adaptive Programme the moratorium on new non-domestic supplies in Hartismere WRZ must be extended for one year (compared to the central plan) to and including 2032/33. Our North Suffolk Reservoir Adaptive Programme is a feasible plan, but we acknowledge it is dependent on the outcomes of the detailed engineering design stage of the both the North Suffolk Reservoir and Lowestoft Reuse and whether the North Suffolk Reservoir can be delivered as quickly as Lowestoft Reuse.

Further detailed design work should be undertaken to confirm the earliest delivery date for the reservoir, scheme costs, and deployable output benefits.

The Central Plan assumes a 40% reduction in leakage by 2050 (in Essex and Suffolk) in addition to a high profile for both metering (i.e., compulsory smart metering by 2035) and water efficiency measures (<110l/head/day by 2050).


**Enhancement Case (NES14)** 

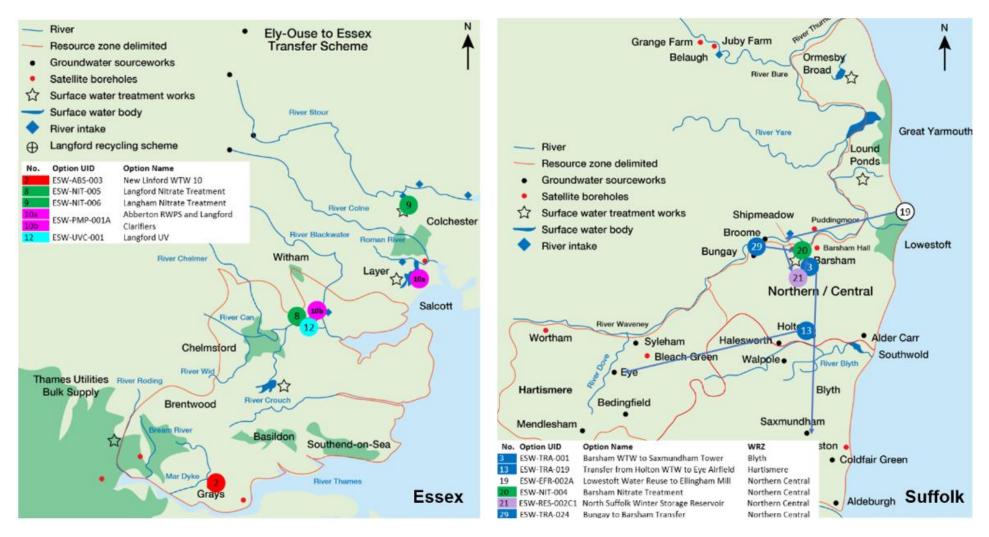


# FIGURE 16: COMPARISON OF LEAST COST WATER SUPPLY OPTION SELECTION UNDER ALTERNATIVE SCENARIOS FOR THE 2050 TIMELINE

**PR24** 






#### FIGURE 17: PARALLEL AXIS PLOTS ILLUSTRATING PLAN PERFORMANCE AGAINST BEST VAUE PLAN CRITERIA

In general scenarios with more adverse supply demand balance scenarios (e.g., High Climate Change, High PCC, Best Environment) result in plans that score worse across the non-monetised best value plan criteria than the Central Plan. This is primarily being driven by the larger deficits and the plan therefore including more environmentally impactful options such as larger (or multiple) water reuse and/or desalination schemes. Conversely those scenarios with more benign (or smaller deficits) result in some plans that perform better than the Central Plan. The Low Demand and Fast Tech scenarios result in plans that score better against the Strategic Environmental Assessment (SEA) criteria than the Central Plan. However, this plan has a significantly higher Totex than the Central Plan (driven by the high demand reduction measures included in this scenario).

**Enhancement Case (NES14)** 



### FIGURE 18: SUMMARY OF CENTRAL PLAN 2050 WATER SUPPLY OPTIONS



Enhancement Case (NES14)

**PR24** 

Table 22 and FIGURE 18 detail the least cost and best value plan supply options as identified through the best value plan assessment process. These options are then discussed further, however for details on these options and their development see the rWRMP24 Options Appraisal technical report.

### TABLE 22: LEAST COST AND BEST VALUE PLAN SUPPLY OPTIONS

| YEAR<br>SELECTED | WRZ        | OPTION                                                                       | OPTION REF                     | OPTION TYPE                                          | AMP   |
|------------------|------------|------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|-------|
| 2027/2028        |            | Linford New WTW 10                                                           | ESW-ABS-003                    | New WTW and borehole(s)<br>(with raw water transfer) | AMP8  |
| 2029/2030        | _          | Langford Nitrate Scheme                                                      | ESW-NIT-005                    | Nitrate removal                                      | AMP8  |
| 2029/2030        | Essex      | Langford UV                                                                  | ESW-UVC-001                    | Cryptosporidium removal                              | AMP8  |
| 2029/2030        | _          | Langham Nitrate Scheme                                                       | ESW-NIT-006                    | Nitrate removal                                      | AMP8  |
| 2030/2031        | _          | Abberton RWPS and Langford<br>Clarifiers                                     | ESW-PMP-001A                   | Raw water pumping station and clarifier upgrade      | AMP8  |
| 2028/2029        | Blyth      | Barsham WTW to<br>Saxmundham Tower                                           | ESW-TRA-001                    | Potable Water Transfer                               | AMP8  |
| 2028/2029        | Hartismere | Holton WTW to Eye Airfield                                                   | ESW-TRA-019                    | Potable Water Transfer                               | AMP8  |
| 2029/2030        |            | Barsham Nitrate Scheme                                                       | ESW-NIT-004                    | Nitrate removal                                      | AMP8  |
| 2030/2031        |            | Bungay wells to Broome WTW<br>transfer and Broome to<br>Barsham WTW transfer | ESW_TRA_018 and<br>ESW-TRA-023 | Raw water transfer                                   | AMP8  |
| 2032/2033        | Central    | Lowestoft Water Reuse for Ellingham Mill and Transfer                        | ESW-EFR-002A                   | Water Reuse                                          | AMP9  |
| 2040/2041        | -          | North Suffolk Winter<br>Storage 7500 and Transfer                            | ESW-RES-002C                   | New Reservoir (with raw water transfer)              | AMP11 |
|                  |            |                                                                              |                                |                                                      |       |

### Linford New WTW

This scheme consists of reinstatement of an abandoned artesian well (previous maximum capacity of 3.5Ml/d. To enable full utilisation of the current abstraction licence, new duty/standby wells for 6.6Ml/d capacity each as a satellite abstraction site. A new water treatment works will be required with an output capacity of 10Ml/d. Network upgrades will also be necessary. As a minimum, mains conditioning will be required, but depending on the final site location, the capacity of some areas of the network may need to be increased to accommodate the higher flows.

### Langford, Barsham and Langham Nitrate schemes

Enhanced treatment has been identified as required at these sites to enable compliance with the WHO nitrate limit for drinking water. Achieving this will provide a WAFU benefit through reduced outage. The treatment technology for these

Enhancement Case (NES14)

options is yet to be confirmed – options include Electrodialysis Reversal (EDR) and Ion-Exchange (IEX) nitrate treatment processes. A wastewater discharge to neighbouring Anglian Water wastewater sites for treatment of the brine has been assumed.

### Abberton RWPS and Langford Clarifier upgrade

This option provides additional pumping capacity pending the completion of a raw water transfer from Layer WTW to Langford WTW in AMP7. This option also includes a clarifier upgrade at Langford WTW. This option provides WAFU benefit through allowing increased transfer capacity.

### Langford UV

This scheme consists of provision of additional ultraviolet treatment contactors to treat for cryptosporidium, providing a WAFU benefit through reduced outage.

### Barsham WTW to Saxmundham Tower

This option transfers treated water from Barsham WTW (in Northern Central WRZ) to Saxmundham Tower (in Blyth WRZ). This option includes a new 13 MI service reservoir at Holton.

### Holton WTW to Eye Airfield

This option transfers treated water from Holton service reservoir (detailed above) to a new service reservoir at Eye Airfield through construction of a new transfer main. This option includes a new 12 MI service reservoir at Eye Airfield and associated outlet mains.

### Bungay wells to Broome WTW transfer and Broome to Barsham WTW transfer

These options together consist of new raw water pipelines to transfer water from existing groundwater sources at Bungay and Broome for treatment at Barsham WTW.

### Lowestoft Water Reuse

This option would take final effluent from Anglian Water's Lowestoft Water Recycling Centre, treat to a high standard and discharge via a transfer pipeline to Ellingham Mill for abstraction downstream at Barsham WTW yielding 11 Ml/d.

### North Suffolk Winter Storage (7500 MI)

New winter storage reservoir to be filled in winter from the River Waveney at ESW's existing Shipmeadow intake and potentially also from a new intake on the Hundred River near Kessingland. This reservoir would be a bunded offline design and has been developed at three sizes (3,500, 5,000 and 7,500 MI). Water would be transferred from the reservoir for treatment at Barsham WTW and this option includes investment for an upgrade to enable treatment of an additional 16 MI/d at Barsham WTW.



### **3.2.5 Long Term Planning**

There are uncertainties associated with preparation of both baseline and final plan supply and demand forecasts including:

- how water company and government measures will reduce PCC over time;
- how quickly the climate will change and as it does, how this will affect rainfall patterns, rainfall totals, river flows, reservoir refill and groundwater recharge; and
- how resilient the environment will be to climate change and whether water company abstraction licences will need to be reduced further in the future.

To test the impact of these uncertainties upon option selection, alternative plans have been considered. Section 8.9 of the rWRMP24 technical report details the results of these plans, which are summarised in table 24.

Our Least Cost and Best Value Plan include the same options selected in the same years and therefore the costs are the same for these two plans. The lower cost for the Core Plan reflects the inclusion of our no/low regret options and exclusion of the options planned in the longer term to resolve the deficits resulting from the implementation of Environmental Destination. Our Best Environment & Society Plan assumes a high (Enhanced) Environmental Destination scenario and 50% reduction in leakage by 2050.

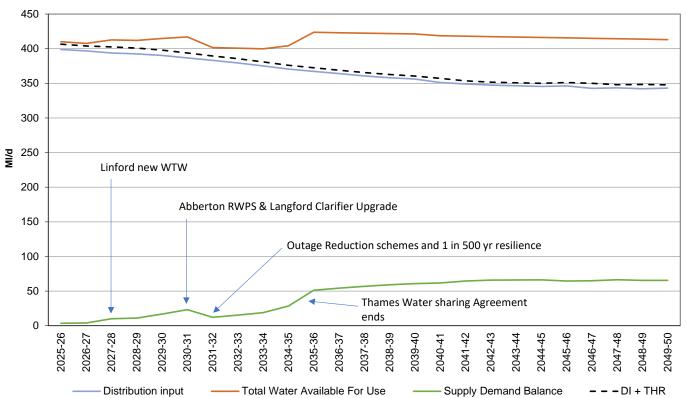
|                                          | SUPPLY OPTIONS |                    |                                           | DEMAND<br>OPTIONS | MA                 | MANAGEMENT                                                                  |               | AN COST         |                                     |
|------------------------------------------|----------------|--------------------|-------------------------------------------|-------------------|--------------------|-----------------------------------------------------------------------------|---------------|-----------------|-------------------------------------|
| PLAN                                     | CAPEX<br>(£M)  | OPEX<br>(£M<br>PA) | TOTEX<br>(CAPEX +<br>NPV<br>OPEX)<br>(£M) | CAPEX<br>(£M)     | OPEX<br>(£M<br>PA) | TOTEX           (CAPEX           +         NPV           OPEX)         (£M) | CAPEX<br>(£M) | OPEX<br>(£M PA) | TOTEX<br>(CAPEX + NPV<br>OPEX) (£M) |
| Core Plan                                | 319.00         | 10.66              | 397.67                                    | 406.71            | 129.67             | 536.38                                                                      | 725.71        | 140.33          | 934.05                              |
| Best Value<br>Plan                       | 540.91         | 11.57              | 542.04                                    | 406.71            | 129.67             | 536.38                                                                      | 947.62        | 141.24          | 1078.42                             |
| Least Cost<br>Plan                       | 540.91         | 11.57              | 542.04                                    | 406.71            | 129.67             | 536.38                                                                      | 947.62        | 141.24          | 1078.42                             |
| Best<br>Environment<br>& Society<br>Plan | 1465.18        | 118.03             | 1351.54                                   | 631.72            | 147.22             | 778.94                                                                      | 2096.89       | 265.25          | 2130.48                             |

### TABLE 23: PLAN COSTS

**Enhancement Case (NES14)** 

# PR**24**

### TABLE 24: ADAPTIVE PROGRAMME COSTS


|                                        | SUPPLY OPTIONS |                 |                                           | DEMAND MANAGEMENT<br>OPTIONS |                    |                                           | TOTAL PLAN COST |                 |                                        |
|----------------------------------------|----------------|-----------------|-------------------------------------------|------------------------------|--------------------|-------------------------------------------|-----------------|-----------------|----------------------------------------|
| ADAPTIVE<br>PROGRAMME                  | CAPEX<br>(£M)  | OPEX<br>(£M PA) | TOTEX<br>(CAPEX +<br>NPV<br>OPEX)<br>(£M) | CAPEX<br>(£M)                | OPEX<br>(£M<br>PA) | TOTEX<br>(CAPEX +<br>NPV<br>OPEX)<br>(£M) | CAPEX<br>(£M)   | OPEX<br>(£M PA) | TOTEX<br>(CAPEX +<br>NPV OPEX)<br>(£M) |
| North Suffolk<br>Reservoir             | 472.25         | 12.04           | 501.61                                    | 406.71                       | 129.67             | 536.38                                    | 878.96          | 141.71          | 1037.99                                |
| High PCC                               | 594.20         | 27.25           | 662.17                                    | 406.71                       | 99.79              | 506.50                                    | 1000.91         | 127.04          | 1168.68                                |
| High Environ-<br>mental<br>Destination | 237.51         | 7.30            | 1414.84                                   | 406.71                       | 129.67             | 536.38                                    | 644.22          | 136.96          | 1951.21                                |
| Habs Regs                              | 518.15         | 22.07           | 596.88                                    | 406.71                       | 129.67             | 536.38                                    | 924.86          | 151.74          | 1133.25                                |

**Enhancement Case (NES14)** 

### **3.2.6 Best Value Plan Benefits**

Final plan supply demand balance calculations have been prepared for each of the WRZs accounting for the demand savings and supply gains from our preferred Best Value Plan. Final planning scenario supply demand balance graphs and tabled summary data for each WRZ, under the dry year annual average (DYAA) scenario are presented below:

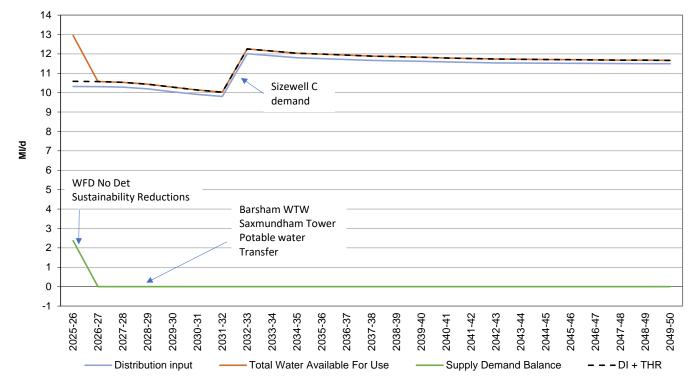
### FIGURE 19: BVP DYAA SUPPLY DEMAND BALANCE GRAPH FOR ESSEX WRZ



### Essex - DYAA Final Plan Water Supply-Demand Balance

### TABLE 25: BVP DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE ESSEX WRZ

| Essex WRZ                | End of AMP8 | End of AMP9 | End of AMP10 | End of AMP11 | End of AMP12 |
|--------------------------|-------------|-------------|--------------|--------------|--------------|
|                          | 2029/30     | 2034/35     | 2039/40      | 2044/45      | 2049/50      |
| Supply Demand<br>Balance | 16.99       | 28.30       | 60.73        | 66.20        | 65.38        |


The SDB shows the increase in surplus resulting from Linford new WTW in 2027/28, and then the upgrade to the Abberton RWPS and clarifiers at Langford WTW in 2030/31. This ensures that we can maximise the capacity of the Layer WTW to Langford WTW pipeline, the construction of which will be completed in AMP7. The Essex WRZ SDB benefits from the outage reduction schemes from 2029/30, although their principal purpose is not for gain in WAFU, but for resilience under



**Enhancement Case (NES14)** 

normal year and critical periods, as well as DYAA, to ensure that the water we have forecasted to be available to us, will be, and not unusable due to poor water quality. All of the above options are required for 1 in 500-year resilience to be achieved, which we have forecasted to be from 2031/32. Whilst the Linford new WTW supply option is not needed to achieve surplus under the 1 in 200-year resilience scenario, without it, the surplus in 2027/28 would only be 0.13 Ml/d. The SDB shows a 20 Ml/d step up in 2035/36 when our water sharing agreement with Thames Water comes to an end.

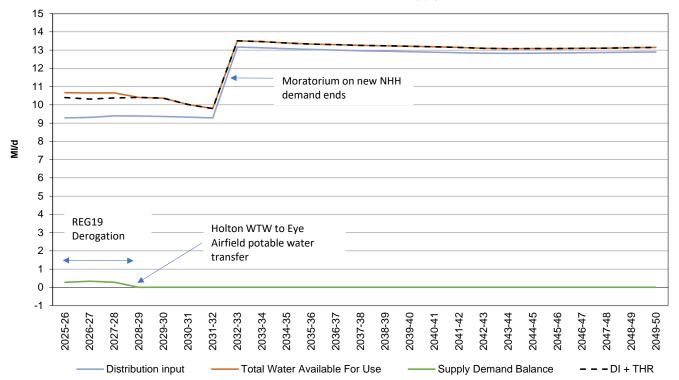
#### FIGURE 20: BVP DYAA SUPPLY DEMAND BALANCE GRAPH FOR BLYTH WRZ



#### Blyth WRZ - DYAA Final Plan Water Supply-Demand Balance

#### TABLE 26: BVP DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE BLYTH WRZ

| Blyth WRZ                | End of AMP8 | End of AMP9 | End of AMP10 | End of AMP11 | End of AMP12 |
|--------------------------|-------------|-------------|--------------|--------------|--------------|
|                          | 2029/30     | 2034/35     | 2039/40      | 2044/45      | 2049/50      |
| Supply Demand<br>Balance | 0           | 0           | 0            | 0            | 0            |


The initial surplus is eliminated in 2026-27 due to the sustainability reductions to Holton & Halesworth, Walpole and Little Glemham abstraction licences, which come in on 31 March 2026, requiring the construction of a new potable water transfer. This strategic pipeline allows a transfer of water from the Northern Central Zone to Blyth from 2028/29, initially utilising the baseline surplus in the Northern Central WRZ, and then the new resources provided by the Bungay wells to Broome WTW and Broome to Barsham WTW transfers, Lowestoft Reuse, and the North Suffolk Winter Storage Reservoir. The water



imported through the new pipeline meets the subsequent sustainability reductions in 2030/31, and in the 2040s due to Environmental Destination.

For two years before the new transfer is operational (2026/27 - 2027/28), the deficit has been resolved by a small decrease of 0.6 Ml/d in the assumed volume of potable water exported from Walpole WTW in Blyth to the Halesworth area of distribution in the Northern Central WRZ.

#### FIGURE 21: BVP DYAA SUPPLY DEMAND BALANCE GRAPH FOR HARTISMERE WRZ

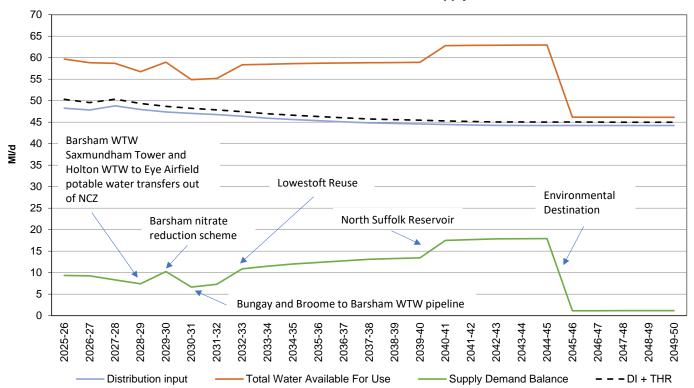


#### Hartismere WRZ - DYAA Final Plan Water Supply-Demand Balance

#### TABLE 27: BVP DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE HARTISMERE WRZ

| Hartismere WRZ        |      | End of AMP8 | End of AMP9 | End of AMP10 | End of AMP11 | End of AMP12 |
|-----------------------|------|-------------|-------------|--------------|--------------|--------------|
|                       |      | 2029/30     | 2034/35     | 2039/40      | 2044/45      | 2049/50      |
| Supply Der<br>Balance | mand | 0           | 0           | 0            | 0            | 0            |

The new supply option for the Hartismere WRZ is a pipeline that allows a transfer of water from the Northern Central Zone to Hartismere, initially utilising the baseline surplus in the Northern Central WRZ, and then the new resources provided by the Bungay wells to Broome WTW and Broome to Barsham WTW transfers, Lowestoft Reuse, and the North Suffolk Winter Storage Reservoir. In addition to the above, we know from our draft WRMP work that for our Hartismere WRZ final plan to not be in supply deficit, from the start of the planning period until the new strategic pipeline provides additional resource




**Enhancement Case (NES14)** 

from 2028/29, we will need to maintain a moratorium on new non-household demand where the water is used for nondomestic purposes. This is incorporated into our WRMP24 Final Preferred Plan demand forecast.

However, even with the moratorium in place, sustainability reductions imposed from the start of the planning horizon, push the WRZ into deficit, as detailed in Section 3.3. To resolve that deficit, our only option is to challenge the timing of the imposition of these sustainability reductions via an application for an exemption to Regulation 19 of the Water Framework Directive on the grounds of Overriding Public Interest (OPI). This is reflected in 6.3FP of the ESWHRT Table 3b WRMP planning tables.

#### FIGURE 22: BVP DYAA SUPPLY DEMAND BALANCE GRAPH FOR NORTHERN CENTRAL WRZ



Northern Central WRZ - DYAA Final Plan Water Supply-Demand Balance

# TABLE 28: BVP DYAA SUPPLY DEMAND BALANCE FIGURES FOR THE NORTHERN CENTRAL WRZ

| Northern Central         | End of AMP8 | End of AMP9 | End of AMP10 | End of AMP11 | End of AMP12 |
|--------------------------|-------------|-------------|--------------|--------------|--------------|
| WRZ                      | 2029/30     | 2034/35     | 2039/40      | 2044/45      | 2049/50      |
| Supply Demand<br>Balance | 10.26       | 12.01       | 13.45        | 17.93        | 1.17         |

The initial surplus in the Northern Central WRZ is used to resolve the deficits in Blyth and Hartismere WRZs via the new strategic pipelines when it becomes operational in 2028/29. This supply is supported by the Barsham nitrate reduction

| NORTHUMBRIAN       | ESSEX&SUFFOLK      |
|--------------------|--------------------|
| WATER (iving water | WATER living water |
|                    |                    |

Enhancement Case (NES14)

scheme from 2029/30, the principal purpose of which is not for gain in Water Available for Use (WAFU), but for resilience under normal year and critical periods, as well as DYAA, to ensure that the water we have forecasted to be available to us, will be, and not unusable due to poor water quality. This is further supported from 2030/31 by the 1 Ml/d provided by the Bungay wells to Broome WTW and Broome to Barsham WTW transfers.

Additional resources are then required in the Northern Central WRZ to meet its own demand, plus that in Blyth and Hartismere WRZs, via the new potable water transfers. These resources are Lowestoft Reuse in 2032/33, and the North Suffolk Winter Storage Reservoir in 2040/41.

Further graphs and tables showing final planning scenario supply demand balances under the Dry Year Critical Period conditions are included within our revised draft WRMP showing positive balances for all areas.

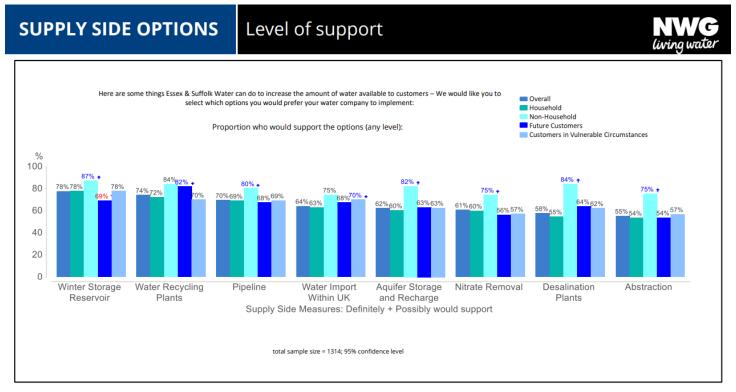
To ensure we maintain headroom without deficits we will have a moratorium on new non-domestic supplies in our Hartismere WRZ which will remain in place until 2032 when new supplies will be online to support development in the area. The Hartismere moratorium is required because we are forecasting a significant increase in new non-domestic demand which is equivalent to a 35% increase in overall household and non-household demand and new supply schemes will not be developed until 2032. Suffolk is a serious water stressed area with limited supply headroom and we will work with businesses to consider water efficiency and water recycling in order to minimise their mains water needs. Our baseline supply headroom is constrained by the Environment Agency's No Deterioration policy which requires us to maintain groundwater abstraction at or below recent actual levels. Hartismere abstraction licences have been investigated in our part of the Water Industry National Environment Programme (WINEP) which has concluded that all Hartismere abstraction licence annual licensed quantities should be reduced to an agreed sustainable level in 2030.

We have several Drought Plan drought permit options in both our Essex and Suffolk supply areas although we have never needed to use them. The last time we imposed a Temporary Use Ban was in 1998 although we did need to implement our Level 1 Appeal for Restraint drought action in summer 2022, given the exceptionally dry weather. We have not included the deployable output gain from drought permits in our final plan supply demand balance forecasts. We intend to increase the return period of needing Level 3 drought actions (i.e., plan on needing them less frequently) from 2032 once our WRMP supply schemes are in supply.

# 3.2.7 Customer need

Section 8.2 of the rWRMP24 main technical report provides an overview of the customer research that we have undertaken to understand customers' preferences regarding types of demand management and supply option types. The following customer research has been undertaken with the results being used to inform the development of our Best Value Plan:

**Enhancement Case (NES14)** 


- ESW WRMP Survey: We have undertaken quantitative (online and face-to-face surveys) research regarding WRMP24 options with a total of 3,271 customers taking part. The results, presented in a report entitled "Essex & Suffolk Water Water Resources Management Plan Survey report" (July 2022), can be found here.
- Water Resources East: We jointly funded further customer engagement as part of a Water Resources East club project. This comprised qualitative, reconvened online workshops with pre- and post- surveys (4 with ESW customers, 4 with Cambridge Water customers and 8 with Anglian Water customers). In-depth interviews were held with non-household customers and stakeholders with a total of 89 participants. The results can be found here.
- ESW Affordability and Acceptability Research: our gualitative affordability and acceptability research (NES49).

In summary, customers strongly support leakage reduction and water efficiency and of the metering options, prefer traditional meters over smart meters. Customers prefer more traditional source of water such as groundwater, river abstractions and winter storage reservoirs and least prefer water reuse and desalination options.

The results of all three areas of research are presented in our Customer Research Report which can be downloaded here.

We describe our customer engagement in more detail in section 2.6.

#### FIGURE 23: EXAMPLE OF OPTIONS RESEARCH OUTPUT (JUNE 2022)





28 September 2023 PAGE 77 OF 91

**Enhancement Case (NES14)** 

We have used this information to help inform the development of our Best Value Plan. Table 29 below presents a comparison of the options chosen in our Best Value Plan against the views of our customers.

#### **TABLE 29: COMPARISON OF BVP OPTIONS AGAINST CUSTOMER VIEWS**

| Option Type          | Option Name / Target                                                                                                                    | Customer view                                                                                                                                                                                                                                                                                    | Preferred Final Plan Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demand<br>Management | 40% reduction in<br>Leakage by 2050                                                                                                     | Leakage reduction tends to come out<br>as a high or mid priority when ESW<br>customers are asked what is important<br>to them.                                                                                                                                                                   | The national target is to reduce leakage by<br>50% by 2050. While we will reduce<br>leakage by 40% by 2050 in our ESW<br>supply area, we will be reducing leakage<br>by 55% by 2050 in our Northumbrian<br>Water region – we increased this target<br>from 50% to 55% in response to customer<br>feedback. At a group level, this means we<br>will reduce leakage by 50% by 2050.<br>Customers support leakage reduction.                                                                                  |
| Demand<br>Management | Compulsory Metering<br>by 2030 in Suffolk and<br>2035 in Essex to<br>support a reduction in<br>PCC to<br>110/litres/head/day by<br>2050 | When metering is presented as part of<br>an overall water efficiency package<br>(e.g., as in our pre-acceptability (2023)<br>research) it is considered a high<br>priority, however when we test it in<br>isolation (e.g., as in our WRMP<br>company and regional research)<br>support is lower. | We consider it a necessary component of<br>our preferred final plan to reduce<br>household consumption and meet national<br>PCC targets. Additionally, from an<br>environmental perspective given our<br>region is a serious water stressed area<br>and many of our existing groundwater<br>abstractions, if fully utilised, would be<br>unsustainable.                                                                                                                                                    |
| Demand<br>Management | Fully smart metered<br>by 2035 to support a<br>reduction in PCC to<br>110/litres/head/day by<br>2050                                    | When metering is presented as part of<br>an overall water efficiency package<br>(e.g., as in our pre-acceptability (2023)<br>research) it is considered a high<br>priority. However, when we test it in<br>isolation (e.g., as in our WRMP options<br>research) support drops.                   | We consider it a necessary component of<br>our preferred final plan. Smart metering<br>provides the largest demand savings and<br>without it, we would not be able to meet<br>the national PCC targets. Additionally,<br>from an environmental perspective, it will<br>help reduce demand and therefore<br>abstraction which is also important given<br>our region is a serious water stressed area<br>and many of our existing groundwater<br>abstractions, if fully utilised, would be<br>unsustainable. |

**Enhancement Case (NES14)** 

| Option Type          | Option Name / Target                                                                                                                                                                 | Customer view                                                                                                                                                                                                                                                                                                                                        | Preferred Final Plan Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demand<br>Management | Household and Non-<br>household water<br>efficiency programme<br>to support a reduction<br>in PCC to 110/l/hd/d<br>by 2050 and a<br>reduction in business<br>demand of 9% by<br>2038 | Our customer research suggests that<br>PCC is a mid-low priority relative to<br>other measures.                                                                                                                                                                                                                                                      | Although water efficiency programmes are<br>a mid to low priority for our customers,<br>they are important in reducing both<br>household and business water demand<br>and are required in order to meet national<br>targets                                                                                                                                                                                                                                                                                                |
| Supply               | Linford new WTW and borehole(s)                                                                                                                                                      | Customers prefer more traditional<br>source of water such as groundwater,<br>river abstractions and winter storage<br>reservoirs                                                                                                                                                                                                                     | Selected in least cost and best value plan and supported by customers.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Supply               | Barsham, Langham<br>and Langford Nitrate<br>Removal Schemes                                                                                                                          | Participants found this option difficult to<br>understand and it received lower levels<br>of support than other options<br>presented. However, 61% of<br>participants supported nitrate removal<br>at any level ('definite' or 'possible'<br>support). There was significantly higher<br>levels of support from non-household<br>participants (75%). | Selected in least cost and best value plan.<br>The majority of customers still supported<br>this scheme even though it was<br>considered a lower priority. We consider it<br>an important scheme in our final plan<br>because it can be delivered relatively<br>quickly and will reduce the amount of<br>unplanned water quality outage. This will<br>mean that we can at least partially lift the<br>mains water non-domestic use moratorium<br>in the Hartismere WRZ earlier than<br>otherwise would have been the case. |
| Supply               | Abberton RWPS and Langford Clarifier                                                                                                                                                 | No evidence                                                                                                                                                                                                                                                                                                                                          | Selected in least cost and best value plans to resolve near term supply deficits.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Supply               | Suffolk Strategic<br>Pipelines*                                                                                                                                                      | No evidence                                                                                                                                                                                                                                                                                                                                          | Selected in least cost and best value plans to resolve near term supply deficits.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Supply               | Lowestoft Water<br>Reuse                                                                                                                                                             | Participants are open to water recycling<br>and it receives relatively high levels of<br>support. Reassurances would be<br>required about the quality of recycled<br>water and the impact of water recycling<br>on the environment.                                                                                                                  | Selected in least cost and best value plans<br>to resolve near term supply deficits.<br>Supported by customers.                                                                                                                                                                                                                                                                                                                                                                                                            |

**PR24** 

Enhancement Case (NES14)

| Option Type | Option Name / Target                      | Customer view                                                                                                                                    | Preferred Final Plan Considerations                                                                             |
|-------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Supply      | North Suffolk Winter<br>Storage Reservoir | Winter storage reservoirs have high<br>support because of their minimal<br>impact on the environment and the<br>long-term benefits they bring to | Selected in least cost and best value plans<br>to resolve near term supply deficits.<br>Supported by customers. |

\*Barsham WTW to Saxmundham Tower and Holton WTW to Eye Airfield.

The results of all three areas of research are presented in our Customer Research Report for WRMP which can be downloaded <u>here</u>. For our business plan, our full triangulation of customer evidence can be found in our <u>line-of-sight</u> <u>document</u> (NES45) and our customer insight summaries.

PR**24** 

# 4. COST EFFICIENCY

# 4.1. COST METHODOLOGY

# 4.1.1 WRMP24 Costing

#### Supply option costing

Financial costs for all options were developed to enable inclusion within our WRMP24 Economics of Balancing Supply and Demand (EBSD) model as used to calculate our least cost plan.

We used option engineering calculations to produce tables of metrics used with our iMOD cost curves to generate costs for each asset, where each option was broken down into a list of assets. Our cost curve formulae come in two curve types: linear and power. These are represented as follows:

#### **TABLE 30: COST CURVE FORMULA**

| Curve Type | Formula    |
|------------|------------|
| Linear     | y = ax + b |
| Power      | $y = ax^b$ |

Additionally, there are two cost curve categories: CAPEX (capital expenditure) and OPEX (operational expenditure). These are represented as follows:

#### **TABLE 31: COST CURVE FORMULA**

| Curve Type | y-axis parameter  | x-axis parameters                                                                       |
|------------|-------------------|-----------------------------------------------------------------------------------------|
| CAPEX      | Cost (£)          | Calculated engineering metric for instance flowrate, in units such as m <sup>3</sup> /d |
| OPEX       | Annual cost (£/y) | Calculated engineering metric for instance flowrate, in units such as m <sup>3</sup> /d |

The values of CAPEX and OPEX for each asset component were summed to give overall CAPEX, OPEX and TOTEX values for the option.

#### **Risk and overhead allowances**

Cost allowances have been included for all options in alignment with wider NWG/ESW standard overheads as shown in Table 32.

Enhancement Case (NES14)

#### TABLE 32: RISK AND OVERHEAD ALLOWANCES

| Allowance              | Source                       | Application                                 |
|------------------------|------------------------------|---------------------------------------------|
| Contract overheads     | NWG iMod                     | Base capex                                  |
| Project overheads      | NWG iMod                     | Base capex + Contract OH                    |
| Risk                   | NWL Risk Allowance Standards | 10% of Base capex + Contract OH +project OH |
| Estimating Uncertainty | NWG Estimating               | 30% of Base capex + Contract OH +project OH |
|                        | Uncertainty Matrix           |                                             |

#### **Optimism Bias Approach**

Optimism bias (OB) has been calculated for all option types. This has been developed in alignment with the All Company Working Group (ACWG) Cost Consistency Methodology, and has been used for the assessment of Best Value Plan as an indicator of scheme deliverability. Table 33 summarises the OB developed for each option type. For purposes of costing options, the estimating uncertainty allowance has been used to cover optimism bias.

#### TABLE 33: OPTIMISM BIAS

| Allowance       | Optimism Bias |
|-----------------|---------------|
| Desalination    | 53.9%         |
| Effluent Re-use | 58.8%         |
| New Reservoir   | 43.4%         |
| Transfer        | 27.5%         |

# **4.1.2 Optioneering Review**

Between our draft and final WRMP24 submissions, we reviewed the alignment of our WRMP costs with the other water enhancement options being developed via our PR24 process. The purpose of this was to assure the consistency of option development between the WRMP24 options process delivered by Mott MacDonald in line with WRMP24 guidance, and our remaining Water enhancement options developed by Stantec.

As both WRMP and other PR24 options have been costed on the same basis using Northumbrian Water's iMOD cost models, the review focused on the technical outputs of the optioneering process, as any cost differences would be driven by differences in option scope and design assumptions. Stantec engineers responsible for development of the PR24 options reviewed a representative range of WRMP options, including transfer schemes, treatment and re-use schemes, and nitrate options. The review focused on:

- selection of scope items;
- process design and sizing assumptions for pipelines and process units; and
- opex assumptions for power and chemical usage.

**Enhancement Case (NES14)** 

The outcome of the review provided assurance of alignment of all aspects of solution development between the two programmes.

Costs shown in our WRMP24 submission differ from those in this case, as our PR24 costs are adjusted to Q2 2022/23 price-base.

## Carbon Cost Methodology

The carbon impact of options was considered as part of the feasibility assessment stage, with an NPV of the whole life carbon of each option calculated using HMT Green book carbon prices.

**Enhancement Case (NES14)** 

## **4.1.3 Best Value Option Costs**

Table 34 shows the total cost associated with our best value plan supply options, and therefore includes the Capex costs forecast in AMP8, AMP9 and AMP10 required to deliver all options. Opex is shown as an annual operating cost, effective from beneficial completion of each option (The WReN/WRW Inter Regional Transfer option is additional to our WRMP best value plan and is described in Section 1.3).

#### TABLE 34: SUPPLY OPTION COSTS – TOTAL COST (AMP8 – AMP10)

| Option Name                                                                                               | Туре                               | Scope                                                                                                                                                                                                   | Capex £m | Opex (Annual) £m   |
|-----------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|
| Linford New WTW 10                                                                                        | Groundwater<br>Abstraction and WTW | New WTW and borehole(s) (with raw water transfer)                                                                                                                                                       | 37.200   | 1.566              |
| Langham Nitrate scheme                                                                                    | Nitrate Removal                    | Construction and integration of<br>Electro Dialysis Reduction (EDR) Ion-<br>exchange process                                                                                                            | 40.100   | 1.311              |
| Langford Nitrate scheme                                                                                   | Nitrate Removal                    | Construction and integration of<br>Electro Dialysis Reduction (EDR) Ion-<br>exchange process                                                                                                            | 30.738   | 1.092              |
| Langford UV                                                                                               | Cryptosporidium<br>Removal         | Construction and integration of UV process                                                                                                                                                              | 7.157    | 0.185              |
| Abberton RWPS and<br>Langford Clarifier<br>upgrade                                                        | Raw Water Treatment                | Raw water pumping station and<br>Clarifier Upgrade                                                                                                                                                      | 9.412    | 1.726              |
| Suffolk Strategic<br>Network (Barsham<br>WTW to<br>Saxmundham Tower<br>and Holton WTW to<br>Eye Airfield) | Potable Water<br>Transfers         | Barsham WTW to Holton, Holton to<br>Saxmundham Tower and Holton<br>WTW to Eye Airfield transfer<br>pipelines, Holton Service Reservoir,<br>Eye Airfield Service Reservoir, and<br>outlet pumping mains. | 117.730  | 0.624              |
| Bungay wells to<br>Broome WTW<br>transfer and Broome<br>to Barsham WTW<br>transfer                        | Raw Water Transfers                | Bungay wells to Broome WTW and<br>Broome to Barsham WTW raw water<br>transfer pipelines                                                                                                                 | 8.935    | 0.074              |
| Lowestoft Reuse                                                                                           | Water Reuse                        | Lowestoft Water Reuse for Ellingham<br>Mill and Transfer                                                                                                                                                | 79.701   | 3.289              |
| North Suffolk Winter<br>Storage Reservoir<br>7500 MI and Transfer                                         | New Reservoir                      | New Reservoir (with raw water transfer)                                                                                                                                                                 | 209.739  | 0.200 (from AMP11) |
| Barsham River<br>Works Upgrade                                                                            | Treatment upgrade                  | Inlet work capacity upgrade to allow<br>for increased water supply from either<br>the North Suffolk Reservoir or<br>Lowestoft Reuse.                                                                    | 31.643   | 0.720 (from AMP11) |
| Barsham Nitrate<br>scheme                                                                                 | Nitrate Removal                    | Construction and integration of<br>Electro Dialysis Reduction (EDR) Ion-<br>exchange process                                                                                                            | 16.017   | 0.967              |
| WReN / WRW Inter-<br>Regional Transfer<br>Strategic Resource<br>Option                                    | Inter-Regional<br>Transfer         | Provision for anticipated regional SRO transfers                                                                                                                                                        | 1.600    | 0.000              |
| Total                                                                                                     |                                    |                                                                                                                                                                                                         | 5893.972 | 11.754             |

Table 35 shows the total AMP8 costs for delivery of our best value WRMP supply options. Capex includes proposed AMP8 accelerated spend, currently planned for delivery in years 4 and 5 of AMP7 to enable completion in line with required



**Enhancement Case (NES14)** 

beneficial use dates opex is shown as the total opex impact in AMP8. Where no opex is recorded, it is because options are scheduled for beneficial completion in year 5 of AMP8 or later, and therefore opex is only incurred beyond AMP8. Total AMP8 capex is £380.157m. Opex in AMP8 is £5.948m and is related to Linford new WTW and Suffolk Strategic Network options only.

#### TABLE 35: SUPPLY OPTION COSTS - AMP8 TOTAL COSTS

| Option Name                                                                                            | Туре                               | Scope                                                                                                                                                                              | Capex £m          | Opex £m |
|--------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| Linford New WTW 10<br>MI/d                                                                             | Groundwater Abstraction<br>and WTW | New WTW and borehole(s) (with raw water transfer)                                                                                                                                  | 37.200            | 4.699   |
| Langham Nitrate scheme                                                                                 | Nitrate Removal                    | Construction and integration of Electro<br>Dialysis Reduction (EDR) Ion-<br>exchange process                                                                                       | 40.100            | 0.00    |
| Langford Nitrate scheme                                                                                | Nitrate Removal                    | Construction and integration of Electro<br>Dialysis Reduction (EDR) Ion-<br>exchange process                                                                                       | 30.738            | 0.00    |
| Langford UV                                                                                            | Cryptosporidium<br>Removal         | Construction and integration of UV process                                                                                                                                         | 7.157             | 0.00    |
| Abberton RWPS and<br>Langford Clarifier<br>upgrade                                                     | Raw Water Treatment                | Raw water pumping station and<br>Clarifier Upgrade                                                                                                                                 | 9.412             | 0.00    |
| Suffolk Strategic<br>Network (Barsham WTW<br>to Saxmundham Tower<br>and Holton WTW to Eye<br>Airfield) | Potable Water Transfers            | Barsham WTW to Saxmundham<br>Tower and Holton WTW to Eye<br>Airfield transfer pipelines, Holton<br>Service Reservoir, Eye Service<br>Reservoir, Hartismere Distribution<br>upgrade | 117.730           | 1.249   |
| Bungay wells to Broome<br>WTW transfer and<br>Broome to Barsham<br>WTW transfer                        | Raw Water Transfers                | Bungay wells to Broome WTW and<br>Broome to Barsham WTW raw water<br>transfer pipelines                                                                                            | 8.935             | 0.00    |
| Lowestoft Reuse                                                                                        | Water Reuse                        | Lowestoft Water Reuse for Ellingham<br>Mill and Transfer                                                                                                                           | 76.437            | 0.00    |
| North Suffolk Winter<br>Storage Reservoir 7500<br>MI and Transfer                                      | New Reservoir                      | New Reservoir (with raw water transfer)                                                                                                                                            | 34.831            | 0.00    |
| Barsham River Works<br>Upgrade                                                                         | Treatment upgrade                  | Inlet work capacity upgrade to allow<br>for increased water supply from either<br>the North Suffolk Reservoir or<br>Lowestoft Reuse.                                               | AMP 9/10 delivery | 0.00    |

PR24

**Enhancement Case (NES14)** 

| Total                  |                         |                                                                                              | 380.157 | 5.948 |
|------------------------|-------------------------|----------------------------------------------------------------------------------------------|---------|-------|
| Option                 |                         |                                                                                              |         |       |
| Strategic Resource     |                         | transfers                                                                                    | 1.600   | 0.00  |
| Regional Transfer      | Inter-Regional Transfer | Provision for anticipated regional SRO                                                       |         | 0.00  |
| WReN / WRW Inter-      |                         |                                                                                              |         |       |
| Barsham Nitrate scheme | Nitrate Removal         | Construction and integration of Electro<br>Dialysis Reduction (EDR) Ion-<br>exchange process | 16.017  | 0.00  |

Table 36 provides the Capex spend profile for the £380.157m AMP8 investment required to deliver our Best Value Plan for supply options. As stated above, this includes proposed accelerated spend of £10.888m in 2023/34 and £24.226m in 2024/25.

#### TABLE 36: BEST VALUE SUPPLY OPTION COSTS - AMP8 CAPEX PROFILE (£m)

| 1.697<br>3.281<br>0.000<br>0.500<br>0.000 | 3.394<br>6.563<br>0.000<br>1.500<br>0.400 | 11.659         24.987         0.000         3.203         0.500                                                                                     | 14.922<br>0.000<br>0.000<br>3.203<br>0.500                                                                                                                                                                                    | 14.922         0.000         0.000         3.203         0.200                                                                                                                                                                                                                                                                                        | 14.922<br>0.000<br>0.000<br>3.203<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                 | 14.922<br>0.000<br>0.000<br>1.203<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.281<br>0.000<br>0.500                   | 6.563<br>0.000<br>1.500                   | 24.987<br>0.000<br>3.203                                                                                                                            | 0.000 0.000 3.203                                                                                                                                                                                                             | 0.000 0.000 3.203                                                                                                                                                                                                                                                                                                                                     | 0.000 0.000 3.203                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000 0.000 1.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.281<br>0.000                            | 6.563<br>0.000                            | 24.987<br>0.000                                                                                                                                     | 0.000                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.281                                     | 6.563                                     | 24.987                                                                                                                                              | 0.000                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           |                                           |                                                                                                                                                     | -                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                           |                                                                                                                                                     | -                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.697                                     | 3.394                                     | 11.659                                                                                                                                              | 14.922                                                                                                                                                                                                                        | 14.922                                                                                                                                                                                                                                                                                                                                                | 14.922                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |                                           |                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                           |                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.400                                     | 0.600                                     | 1.787                                                                                                                                               | 1.787                                                                                                                                                                                                                         | 1.787                                                                                                                                                                                                                                                                                                                                                 | 1.787                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           |                                           |                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                           |                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.716                                     | 5.431                                     | 36.527                                                                                                                                              | 36.527                                                                                                                                                                                                                        | 36.527                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.000                                     | 0.000                                     | 1.753                                                                                                                                               | 1.753                                                                                                                                                                                                                         | 1.753                                                                                                                                                                                                                                                                                                                                                 | 2.077                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.500                                     | 0.500                                     | 1.431                                                                                                                                               | 1.431                                                                                                                                                                                                                         | 1.431                                                                                                                                                                                                                                                                                                                                                 | 1.431                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.750                                     | 2.250                                     | 6.148                                                                                                                                               | 6.148                                                                                                                                                                                                                         | 6.148                                                                                                                                                                                                                                                                                                                                                 | 6.148                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.500                                     | 2.500                                     | 8.020                                                                                                                                               | 8.019                                                                                                                                                                                                                         | 8.019                                                                                                                                                                                                                                                                                                                                                 | 8.019                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.544                                     | 1.088                                     | 17.784                                                                                                                                              | 17.784                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23/24                                     | 24/25                                     | 25/26                                                                                                                                               | 26/27                                                                                                                                                                                                                         | 27/28                                                                                                                                                                                                                                                                                                                                                 | 28/29                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | 0.500<br>0.750<br>0.500<br>0.000<br>2.716 | 0.544       1.088         0.500       2.500         0.750       2.250         0.500       0.500         0.000       0.000         2.716       5.431 | 0.544       1.088       17.784         0.500       2.500       8.020         0.750       2.250       6.148         0.500       0.500       1.431         0.000       0.000       1.753         2.716       5.431       36.527 | 0.544         1.088         17.784         17.784           0.500         2.500         8.020         8.019           0.750         2.250         6.148         6.148           0.500         0.500         1.431         1.431           0.000         0.000         1.753         1.753           2.716         5.431         36.527         36.527 | 0.544         1.088         17.784         17.784         0.000           0.500         2.500         8.020         8.019         8.019           0.750         2.250         6.148         6.148         6.148           0.500         0.500         1.431         1.431         1.431           0.000         0.000         1.753         1.753         1.753           2.716         5.431         36.527         36.527         36.527 | 0.544         1.088         17.784         17.784         0.000         0.000           0.500         2.500         8.020         8.019         8.019         8.019           0.750         2.250         6.148         6.148         6.148         6.148           0.500         0.500         1.431         1.431         1.431         1.431           0.000         0.000         1.753         1.753         1.753         2.077           2.716         5.431         36.527         36.527         36.527         0.000 |

# 4.2. COST BENCHMARKING

# 4.2.1 Direct costs

A sample of WRMP project estimates produced as part of the PR24 costing process have been benchmarked against comparable water and wastewater companies. We have selected 5 projects from the WRMP supply options Best Value

| NORTHUMBRIAN<br>WATER (iving water |   | ESSEX& SUFFOLK<br>WATER living water |
|------------------------------------|---|--------------------------------------|
|                                    | 1 |                                      |

Plan as representative of the range of solution types, technologies, and sites, and compared our costs to industry benchmarks.

For each project, we have identified all cost curves where a direct comparison is possible across our industry dataset and benchmarked each one. For example, for Lowestoft Reuse, we have benchmarked 40 individual cost models to form the overall cost-efficiency assessment. These include key process units such as reverse osmosis, screens, clarification tanks, filtration and chemical treatment and storage, as well as other items such as pipework, buildings, and pumping. Cost efficiency is assessed for each cost model, and benchmarked elements are rolled-up into an overall project level assessment.

The benchmarking exercise compares the Northumbrian Water estimated costs against six comparable water and wastewater companies from England and Wales. A mean average of these companies has been used as the benchmark with 25% and 75% percentiles provided as a suitable range. The costs comparisons have been calculated using each company's latest cost curve data, which is the same data used to build each company's PR24 submission. The costs generated by each cost curve are based on the specific sizing of our WRMP options.

The benchmarked costs shown in Table 37 have been adjusted for inflation using CPIH and have a price base of Q2 2022.

| Option Name                               | NW Cost (£m) | Benchmark (£m) | 25%    | 75%    | Delta  | Delta % |
|-------------------------------------------|--------------|----------------|--------|--------|--------|---------|
| Lowestoft Reuse 11 MI/d                   | 23.666       | 28.365         | 22.648 | 36.486 | -4.699 | -17%    |
| Linford new WTW 10 MI/d                   | 9.730        | 10.311         | 8.249  | 13.405 | -0.581 | -6%     |
| North Suffolk Winter Storage<br>Reservoir | 1.912        | 2.349          | 1.855  | 3.064  | -0.437 | -19%    |
| Barsham to Blyth Transfer<br>Main         | 9.953        | 12.529         | 10.023 | 16.288 | -2.576 | -21%    |
| Langham Nitrate scheme EDR                | 11.983       | 12.232         | 11.772 | 12.687 | -0.249 | -2%     |
| Total                                     | 57.245       | 65.787         | 54.547 | 81.930 | -8.542 | -13%    |

#### TABLE 37: PROJECTS SELECTED FOR INDUSTRY BENCHMARKING

The benchmarking shows each of the projects is more efficient than the benchmark, with a total efficiency of 13% for all comparable cost curves included in the analysis.

# 4.2.2 Indirect Costs

We have also carried out analysis to assess our contractor and client indirect costs against the same 6 comparators as the direct costs benchmarking. Indirect costs include but are not limited to project elements such as design, site-setup, professional support, and other costs not directly related to the construction aspect of a project.

Table 38 shows a summary of costs for each of the 6 comparator water companies used in calculating the benchmark. Percentages refer to the amount of indirect cost that is applied for every £1 of direct costs for each respective comparator source.

# **TABLE 38: COMPARATOR INDIRECT COSTS**

| Indirect Type                     | 1      | 2      | 3      | 4      | 5      | 6       | Benchmark |
|-----------------------------------|--------|--------|--------|--------|--------|---------|-----------|
| Total Contractor Indirect<br>Cost | 42.65% | 54.89% | 43.99% | 42.12% | 43.44% | 61.00%  | 48.01%    |
| Total Client Indirect Cost        | 21.63% | 10.96% | 32.91% | 35.46% | 13.22% | 40.90%  | 25.84%    |
| Total Project Indirect Cost       | 64.28% | 65.85% | 76.90% | 77.58% | 56.65% | 101.90% | 73.86%    |

Table 39 compares our current indirect contractor costs of 36.88% and 26.52% client costs, with the benchmarks calculated in Table 38 above. The analysis shows our contractor indirect costs are 11% more efficient than the benchmark, and our client indirect costs are within 1%. Overall, we are more than 10% more efficient than the benchmark.

## TABLE 39: INDIRECT COST BENCHMARKING

| Indirect Type                  | Benchmark | Northumbrian Water | Delta   |
|--------------------------------|-----------|--------------------|---------|
| Total Contractor Indirect Cost | 48.01%    | 36.88%             | -11.13% |
| Total Client Indirect Cost     | 25.84%    | 26.52%             | 0.68%   |
| Total Project Indirect Cost    | 73.86%    | 63.40%             | -10.46% |

Enhancement Case (NES14)

# 5. CUSTOMER PROTECTION

# 5.1. PERFORMANCE COMMITMENTS

Customers are protected through performance commitments and ODIs on water supply interruptions, but only in extreme circumstances. This enhancement case provides new water supplies for the future, many of which do not provide additional resilience until 2028 or even 2030. So, in practice, there will be very limited protection for customers from ODIs on these benefits.

# 5.2. PRICE CONTROL DELIVERABLE

Our approach to determining Price Control Deliverables (PCD) is outlined in section 12.3 of <u>A3 – costs</u> (NES04). Our assessment has highlighted that for these enhancements, customers will not be protected by performance commitments.

Therefore, we propose a PCD related to delivery of our 2025-30 water supply schemes, to make sure our customers are protected. In Table 40, we assess these enhancements to test if the benefits are linked to PCs; against Ofwat's materiality of 1%; and to understand if there are outcome measures that can be used.

#### TABLE 40: ASSESSMENT OF BENEFITS AGAINST THE PCD CRITERIA

| Enhancement scheme  | Benefits linked to PC?         | Materiality | Possible outcomes?                     |
|---------------------|--------------------------------|-------------|----------------------------------------|
| WRMP supply options | Fail – very limited protection | Pass – 13%  | We could set a water available for use |
| (NES14)             | for customers from ODIs        |             | (WAFU) outcome for these schemes.      |

Ofwat's <u>guidance on PCDs</u> expects us to identify water available for use (WAFU), specified in MI/d, as the deliverable. This deliverable would be aggregated across supply-side improvements to the supply and demand balance and internal interconnectors where appropriate, set out by WRZ.

WAFU is not an effective "unit rate" measure for our water supplies enhancement case, because:

- The impacts of some of our largest schemes on WAFU are not seen until after 2030 (for example, for Lowestoft Reuse or the North Suffolk reservoir).
- Measuring WAFU directly will not be possible until after PR29, when this PCD will need to be reconciled. In practice, we would only be able to measure what each scheme is expected to deliver (which would be identical to a scheme delivery PCD, with the condition that this delivers the WAFU as set out in our WRMP).

Ofwat has not yet set its method for PCDs, or tested how using WAFU would work in practice. We have set out the benefits to WAFU in our **published WRMP tables** and could provide further details on this as needed – if Ofwat considers that this is a practical way to set this PCD across companies. We propose an alternative approach.



**Enhancement Case (NES14)** 

PR**24** 

We propose a single **pooled scheme delivery** PCD for three of our water enhancement cases together – that is, <u>water</u> <u>supplies</u> (NES14); <u>reservoir safety</u> (NES22); and <u>climate change resilience process enhancements</u> (NES24). These cases each have a few large schemes with variable costs, and no clear outcome measures. Our **pooled scheme delivery** PCD will be based on the delivery of individual schemes, with the assessment of the delivery of schemes to be done through external assurance reports to be provided at PR29 (including assessment of partial delivery).

For water supplies, we propose that delivering projects to the specification for WAFU benefits as set out in our WRMP should be a condition of scheme delivery, rather than a unit rate.

# TABLE 41: SUMMARY OF THE PRICE CONTROL DELIVERABLE FOR OUR WINEP PROGRAMME DELIVERY TO PROTECT CUSTOMERS

| Description of price control deliverable                     | Pooled scheme delivery as set in our enhancement cases NES14, NES22, and NES24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement and reporting                                    | We will report on the delivery of these schemes at the next price review (PR29), including specifying the individual schemes that have been delivered, not delivered, or that the Environment Agency or Defra has decided are no longer required (through any changes to WRMP or to reservoir safety).                                                                                                                                                                                                                                                                              |
| Conditions on allowance                                      | Projects must be delivered to the specification set out in WRMP including delivery of benefits to WAFU (NES14). Projects must comply with reservoir safety notices (NES22). Projects must deliver the capacity described in the climate change resilience process enhancements case (NES24).                                                                                                                                                                                                                                                                                        |
| Assurances                                                   | We will provide external assurance, with a duty of care to Ofwat at PR29, that these schemes have been delivered to the specifications described above. Ofwat will set the timetable for this external assurance to be delivered (either for the PR29 business plan, or a later date if they determine this is more appropriate).                                                                                                                                                                                                                                                   |
| Price control deliverable payment rate                       | We will return funds back to customers for individual projects, as specified in Tables 28 and 29 above (for NES24) – 12 individual schemes to be delivered by the dates specified.<br>For partial delivery, we will return partial funding as determined according to project completion by the external assurance. This includes where projects are completed but do not deliver the WAFU as set out in the WRMP for Essex & Suffolk Water (unless ESW can show that this WAFU has been delivered through other alternative schemes to the satisfaction of the external assurers). |
| Impact on performance in relation to performance commitments | There is no direct improvement to performance commitments from this enhancement case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

We propose a single PCD for our pooled scheme delivery. This should:

be set according to individual project costs, rather than a "per project" unit cost. This is because these costs vary considerably, and a single rate would create an incentive to deliver more of the cheapest projects (at the expense of more expensive projects). Ofwat's guidance in IN23/05 identifies this incentive and expects us to set out scheme level deliverables where costs vary significantly across schemes (so our approach here is consistent with the guidance); and



Enhancement Case (NES14)

not include an automatic penalty for non-delivery (beyond returning the costs to customers). This is because each of these enhancement cases has other penalties that would apply in the case of non-delivery: for WRMP, we would not meet our statutory obligations to supply water; and for reservoir safety, we would not meet our statutory obligations for draw-down capacity. For climate change resilience process enhancements, we would continue to face ODI penalties in hot weather.

We have chosen to aggregate these PCDs because these share the same reporting, assurance, and conditions.

We have included a bespoke uncertainty mechanism for this enhancement case in our appendix A3 – costs (NES04). This explains that:

Our Essex & Suffolk Water WRMP24 explains that our final WRMP includes the Lowestoft Water Reuse scheme, rather than the North Suffolk Reservoir. We have chosen this water reuse scheme because it can be delivered more quickly than the reservoir, and so minimises the duration of our moratorium on new non-domestic water supplies in our Hartismere WRZ. However, we would prefer to deliver the North Suffolk Reservoir instead because it has lower energy and carbon costs and has significant potential to build in environmental gain.

In its determinations for accelerated expenditure, Ofwat allowed PR24 accelerated spend to undertake detailed engineering design for the North Suffolk Reservoir. This has started in autumn 2023 and will develop the scheme so that it is "shovel ready" by 2026/27. If, at that point, we conclude that the reservoir would provide better value than Lowestoft Water Reuse scheme, and it can be delivered as quickly, then we would move to the North Suffolk Reservoir Adaptive Programme.

This would require a change to our price controls for 2025-30, removing the remaining costs for the Lowestoft Water Reuse scheme and instead including the remaining costs for the North Suffolk Reservoir.

We propose that Ofwat should include a bespoke uncertainty mechanism to make this change, rather than reopening price controls entirely - similar to decisions for the inclusion of DPC schemes outside/inside price controls, as value-formoney assessments change in practice. We expect that other water companies will propose similar decision points for switching to adaptive programmes, and a common approach should be applied.

As the North Suffolk Reservoir would have wider environmental benefits and public value, we would expect this uncertainty mechanism to consider changes to this PCD too to include the updated expected benefits. There should be customer protection for these benefits, particularly as customers discussed this in our engagement with them, but this would need to be set following the decision in 2026 and the final costs and benefits for the reservoir (if applicable).